Skip to main content

PNNL

  • About
  • News & Media
  • Careers
  • Events
  • Research
    • Scientific Discovery
      • Biology
        • Chemical Biology
        • Computational Biology
        • Ecosystem Science
        • Human Health
          • Cancer Biology
          • Exposure Science & Pathogen Biology
        • Integrative Omics
          • Advanced Metabolomics
          • Chemical Biology
          • Mass Spectrometry-Based Measurement Technologies
          • Spatial and Single-Cell Proteomics
          • Structural Biology
        • Microbiome Science
          • Biofuels & Bioproducts
          • Human Microbiome
          • Soil Microbiome
          • Synthetic Biology
        • Predictive Phenomics
      • Chemistry
        • Computational Chemistry
        • Chemical Separations
        • Chemical Physics
        • Catalysis
      • Earth & Coastal Sciences
        • Global Change
        • Atmospheric Science
          • Atmospheric Aerosols
          • Human-Earth System Interactions
          • Modeling Earth Systems
        • Coastal Science
        • Ecosystem Science
        • Subsurface Science
        • Terrestrial Aquatics
      • Materials Sciences
        • Materials in Extreme Environments
        • Precision Materials by Design
        • Science of Interfaces
        • Solid Phase Processing
          • Cold Spray
          • Friction Stir Welding & Processing
          • ShAPE
      • Nuclear & Particle Physics
        • Dark Matter
        • Fusion Energy Science
        • Neutrino Physics
      • Quantum Information Sciences
    • Energy Resiliency
      • Electric Grid Modernization
        • Emergency Response
        • Grid Analytics
          • AGM Program
          • Tools and Capabilities
        • Grid Architecture
        • Grid Cybersecurity
        • Grid Energy Storage
        • Transmission
        • Distribution
      • Energy Efficiency
        • Appliance and Equipment Standards
        • Building Energy Codes
        • Building Technologies
          • Advanced Building Controls
          • Advanced Lighting
          • Building-Grid Integration
        • Building and Grid Modeling
        • Commercial Buildings
        • Federal Buildings
          • Federal Performance Optimization
          • Resilience and Security
        • Residential Buildings
          • Building America Solution Center
          • Energy Efficient Technology Integration
          • Home Energy Score
        • Energy Efficient Technology Integration
      • Energy Storage
        • Electrochemical Energy Storage
        • Flexible Loads and Generation
        • Grid Integration, Controls, and Architecture
        • Regulation, Policy, and Valuation
        • Science Supporting Energy Storage
        • Chemical Energy Storage
      • Fossil Energy
        • Subsurface Energy Systems
        • Carbon Management
          • Carbon Capture
          • Carbon Storage
          • Carbon Utilization
        • Advanced Hydrocarbon Conversion
      • Nuclear Energy
        • Fuel Cycle Research
        • Advanced Reactors
        • Reactor Operations
        • Reactor Licensing
      • Renewable Energy
        • Solar Energy
        • Wind Energy
          • Wind Resource Characterization
          • Wildlife and Wind
          • Community Values and Ocean Co-Use
          • Wind Systems Integration
          • Wind Data Management
          • Distributed Wind
        • Marine Energy
          • Environmental Monitoring for Marine Energy
          • Marine Biofouling and Corrosion
          • Marine Energy Resource Characterization
          • Testing for Marine Energy
          • The Blue Economy
        • Hydropower
          • Environmental Performance of Hydropower
          • Hydropower Cybersecurity and Digitalization
          • Hydropower and the Electric Grid
          • Materials Science for Hydropower
          • Pumped Storage Hydropower
          • Water + Hydropower Planning
        • Grid Integration of Renewable Energy
        • Geothermal Energy
      • Transportation
        • Bioenergy Technologies
          • Algal Biofuels
          • Aviation Biofuels
          • Waste-to-Energy and Products
        • Hydrogen & Fuel Cells
        • Vehicle Technologies
          • Emission Control
          • Energy-Efficient Mobility Systems
          • Lightweight Materials
          • Vehicle Electrification
          • Vehicle Grid Integration
      • Environmental Management
        • Waste Processing
        • Radiation Measurement
        • Environmental Remediation
    • National Security
      • Chemical & Biothreat Signatures
        • Contraband Detection
        • Pathogen Science & Detection
        • Explosives Detection
        • Threat-Agnostic Biodefense
      • Cybersecurity
        • Discovery and Insight
        • Proactive Defense
        • Trusted Systems
      • Nuclear Material Science
      • Nuclear Nonproliferation
        • Radiological & Nuclear Detection
        • Nuclear Forensics
        • Ultra-Sensitive Nuclear Measurements
        • Nuclear Explosion Monitoring
        • Global Nuclear & Radiological Security
      • Stakeholder Engagement
        • Disaster Recovery
        • Global Collaborations
        • Legislative and Regulatory Analysis
        • Technical Training
      • Systems Integration & Deployment
        • Additive Manufacturing
        • Deployed Technologies
        • Rapid Prototyping
        • Systems Engineering
      • Threat Analysis
        • Advanced Wireless Security
          • 5G Security
          • RF Signal Detection & Exploitation
        • Internet of Things
        • Maritime Security
        • Millimeter Wave
        • Mission Risk and Resilience
    • Data Science & Computing
      • Artificial Intelligence
      • Graph and Data Analytics
      • Software Engineering
      • Computational Mathematics & Statistics
      • Future Computing Technologies
        • Adaptive Autonomous Systems
    • Publications & Reports
    • Featured Research
  • People
    • Inventors
    • Lab Leadership
    • Lab Fellows
    • Staff Accomplishments
  • Partner with PNNL
    • Education
      • Undergraduate Students
      • Graduate Students
      • Post-graduate Students
      • University Faculty
      • University Partnerships
      • K-12 Educators and Students
      • STEM Education
        • STEM Workforce Development
        • STEM Outreach
        • Meet the Team
      • Internships
    • Community
      • Regional Impact
      • Philanthropy
      • Volunteering
    • Industry
      • Available Technologies
      • Industry
      • Industry Partnerships
      • Licensing & Technology Transfer
      • Entrepreneurial Leave
      • Visual Intellectual Property Search (VIPS)
  • Facilities & Centers
    • All Facilities
      • Atmospheric Radiation Measurement User Facility
      • Electricity Infrastructure Operations Center
      • Energy Sciences Center
      • Environmental Molecular Sciences Laboratory
      • Grid Storage Launchpad
      • Institute for Integrated Catalysis
      • Interdiction Technology and Integration Laboratory
      • PNNL Portland Research Center
      • PNNL Seattle Research Center
      • PNNL-Sequim (Marine and Coastal Research)
      • Radiochemical Processing Laboratory
      • Shallow Underground Laboratory

Computational and Theoretical Chemistry Institute

  • About
    • Advisory Board
  • Research & Programs
  • Leadership & Members
  • News & Highlights
  • Publications

Breadcrumb

  1. Home
  2. Projects
  3. Computational and Theoretical Chemistry Institute

CTCI Publications

2025

Bilbrey, J. A.; Firoz, J. S.; Lee, M.-S.; Choudhury, S., Uncertainty Quantification for Neural Network Potential Foundation Models. npj Computational Materials 2025, 11. http://dx.doi.org/10.1038/s41524-025-01572-y 

Peng, B.; Su, Y.; Claudino, D.; Kowalski, K.; Hao Low, G.; Roetteler, M., Quantum Simulation of Boson-Related Hamiltonians: Techniques, Effective Hamiltonian Construction, and Error Analysis. Quantum Science and Technology 2025, 10. http://dx.doi.org/10.1088/2058-9565/adbf42 

Santis, G. D.; Xantheas, S. S., Extending Badger's Rule. I. The Relationship between Energy and Structure in Hydrogen Bonds. J Chem Phys 2025, 162. http://dx.doi.org/10.1063/5.0244238 

Li, X.; Yin, X.; Wiebe, N.; Chun, J.; Schenter, G. K.; Cheung, M. S.; Mülmenstädt, J., Potential Quantum Advantage for Simulation of Fluid Dynamics. Physical Review Research 2025, 7. http://dx.doi.org/10.1103/PhysRevResearch.7.013036 

Jin, B.; Chen, Y.; Pyles, H.; Baer, M. D.; Legg, B. A.; Wang, Z. M.; Washton, N. M.; Mueller, K. T.; Baker, D.; Schenter, G. K.; Mundy, C. J.; De Yoreo, J. J., Formation, Chemical Evolution and Solidification of the Dense Liquid Phase of Calcium (Bi)Carbonate. Nature Materials 2025, 24. http://dx.doi.org/10.1038/s41563-024-02025-5 

Heo, J.; Butreddy, P.; Schenter, G. K.; Mundy, C. J.; De Yoreo, J. J.; Nakouzi, E.; Lee, J.; Chun, J., Colloidal Phenomena Reflect the Interplay between Interfacial Solution Structure, Interparticle Forces, and Dynamical Response. COCIS 2025, 75. http://dx.doi.org/10.1016/j.cocis.2024.101887 

Felsted, R. G.; Chun, J.; Schenter, G. K.; Bard, A. B.; Xia, X.; Pauzauskie, P. J., Mediation of Colloidal Encounter Dynamics by Surface Roughness. Phys Rev Lett 2025, 134, 088201. http://dx.doi.org/10.1103/PhysRevLett.134.088201 

Tzeli, D.; Mato, J.; Xantheas, S. S., The Many-Body Expansion for Metals: Ii. Nonadditive Terms in Clusters Composed of Metals with Ns(1), Ns(2), and Ns(2)P(1) Configurations. The Journal of Physical Chemistry A 2025, 129, 3648-3662. http://dx.doi.org/10.1021/acs.jpca.5c01066 

Perko, J. R.; Xantheas, S. S., Collision Integrals within the Chapman-Enskog Theory for a Generalized Lennard-Jones Potential. The Journal of Chemical Physics 2025, 162. http://dx.doi.org/10.1063/5.0244532 

Okura, Y.; Hallsten, M. N.; Santis, G. D.; Hirata, K.; Fujii, M.; Ishiuchi, S.-I.; Xantheas, S. S., The Nicotine-Tryptophan Dimer: Probing the Principal Interaction of Nicotine with the Nicotinic Acetylcholine Receptor (Nachr), the Binding Pocket in the Human Brain. Journal of the American Chemical Society2025, 147, 14043-14047. http://dx.doi.org/10.1021/jacs.5c00880 

Menczer, A.; Legeza, O., Massively Parallel Tensor Network State Algorithms on Hybrid Cpu-Gpu Based Architectures. J Chem Theory Comput 2025, 21, 1572-1587. http://dx.doi.org/10.1021/acs.jctc.4c00661 

Hoffman, M. P.; Xantheas, S. S., Competition between Hydrogen and Chalcogen Bonding in Homodimers of Chalcogen Hydrides (H(2)X)(2), X = O, S, Se, Te. Journal of the American Chemical Society 2025, 147, 11152-11171. http://dx.doi.org/10.1021/jacs.4c17428 

Hirata, S., New Dimension in Ab Initio Electronic Structure Theory: Temperature, Pressure, and Chemical Potential. The Journal of Physical Chemistry Letters 2025, 16, 3632-3645. http://dx.doi.org/10.1021/acs.jpclett.5c00631 

2024

Manderna, R.; Vu, N.; Foley, J. J. t., Comparing Parameterized and Self-Consistent Approaches to Ab Initio Cavity Quantum Electrodynamics for Electronic Strong Coupling. J Chem Phys 2024, 161. http://dx.doi.org/10.1063/5.0230565 

Visnak, J.; Brandejs, J.; Mate, M.; Visscher, L.; Legeza, O.; Pittner, J., Dmrg-Tailored Coupled Cluster Method in the 4c-Relativistic Domain: General Implementation and Application to the Nuhfi and Nuf(3) Molecules. Journal of Chemical Theory and Computation 2024, 20, 8862-8875. http://dx.doi.org/10.1021/acs.jctc.4c00641 

Vila, F. D.; Rehr, J. J.; Kowalski, K.; Peng, B., Rt-Eom-Ccsd Calculations of Inner and Outer Valence Ionization Energies and Spectral Functions. Journal of Chemical Theory and Computation 2024, 20, 1796-1801. http://dx.doi.org/10.1021/acs.jctc.3c01371 

Tzeli, D.; Golub, P.; Brabec, J.; Matousek, M.; Pernal, K.; Veis, L.; Raugei, S.; Xantheas, S. S., Importance of Electron Correlation on the Geometry and Electronic Structure of [2fe-2s] Systems: A Benchmark Study of the [Fe(2)S(2)(Sch(3))(4)](2-,3-,4-), [Fe(2)S(2)(Scys)(4)](2-), [Fe(2)S(2)(S-P-Tol)(4)](2-), and [Fe(2)S(2)(S-O-Xyl)(4)](2-) Complexes. J Chem Theory Comput 2024, 20, 10406-10423. http://dx.doi.org/10.1021/acs.jctc.4c00781 

Menczer, A.; van Damme, M.; Rask, A.; Huntington, L.; Hammond, J. R.; Xantheas, S. S.; Ganahl, M.; Legeza, O., Parallel Implementation of the Density Matrix Renormalization Group Method Achieving a Quarter Petaflops Performance on a Single Dgx-H100 Gpu Node. Journal of Chemical Theory and Computation 2024, 20, 8397-8404. http://dx.doi.org/10.1021/acs.jctc.4c00903 

Menczer, A.; Legeza, O., Tensor Network State Algorithms on Ai Accelerators. Journal of Chemical Theory and Computation 2024, 20, 8897-8910. http://dx.doi.org/10.1021/acs.jctc.4c00800 

Kowalski, K.; Bauman, N. P.; Low, G. H.; Roetteler, M.; Rehr, J. J.; Vila, F. D., Capturing Many-Body Correlation Effects with Quantum and Classical Computing. Physical Review A 2024, 110. http://dx.doi.org/10.1103/PhysRevA.110.L060401 

Kovács, J.; Kruppa, A. T.; Legeza, Ö.; Salamon, P., Mode Entanglement and Isospin Pairing in Two-Nucleon Systems. Journal of Physics G: Nuclear and Particle Physics2024, 52. http://dx.doi.org/10.1088/1361-6471/ad9345 

Hirata, S., Thermal Quasiparticle Theory. Journal of Chemical Physics 2024, 161. http://dx.doi.org/10.1063/5.0235260 

Gu, P.; Hirata, S., Thermal Mean-Field Theories. Journal of Chemical Physics 2024, 161. http://dx.doi.org/10.1063/5.0235259 

Cruz, J. C.; Hirata, S., Monte Carlo Explicitly Correlated Second-Order Many-Body Green’s Function Calculations of Semiconductor Band Gaps. The Journal of Physical Chemistry C 2024, 128, 17098-17111. http://dx.doi.org/10.1021/acs.jpcc.4c03848 

Alvertis, A. M.; Williams-Young, D. B.; Bruneval, F.; Neaton, J. B., Influence of Electronic Correlations on Electron-Phonon Interactions of Molecular Systems with the Gw and Coupled Cluster Methods. Journal of Chemical Theory and Computation 2024, 20, 6175-6183. http://dx.doi.org/10.1021/acs.jctc.4c00327 

Babar, R.; Barcza, G.; Pershin, A.; Park, H.; Bulancea Lindvall, O.; Thiering, G.; Legeza, Ö.; Warner, J. H.; Abrikosov, I. A.; Gali, A.; Ivády, V., Low-Symmetry Vacancy-Related Spin Qubit in Hexagonal Boron Nitride. npj Computational Materials 2024, 10, 184. http://dx.doi.org/10.1038/s41524-024-01361-z 

Burns, M. X.; Liu, C.; Stein, S.; Peng, B.; Kowalski, K.; Li, A., Galic: Hybrid Multi-Qubitwise Pauli Grouping for Quantum Computing Measurement. Quantum Science and Technology 2024, 10. http://dx.doi.org/10.1088/2058-9565/ad9d74 

Burns M.X., C. Liu, S.A. Stein, B. Peng, K. Kowalski, and A. Li. 2024. "GALIC: Hybrid Multi-Qubitwise Pauli Grouping for Quantum Computing Measurement." Quantum Science and Technology. PNNL-SA-203031. http://dx.doi.org/10.1088/2058-9565/ad9d74 

Bylaska, E. J.; Panyala, A.; Bauman, N. P.; Peng, B.; Pathak, H.; Mejia-Rodriguez, D.; Govind, N.; Williams-Young, D. B.; Apra, E.; Bagusetty, A.; Mutlu, E.; Jackson, K. A.; Baruah, T.; Yamamoto, Y.; Pederson, M. R.; Withanage, K. P. K.; Pedroza-Montero, J. N.; Bilbrey, J. A.; Choudhury, S.; Firoz, J.; Herman, K. M.; Xantheas, S. S.; Rigor, P.; Vila, F. D.; Rehr, J. J.; Fung, M.; Grofe, A.; Johnston, C.; Baker, N.; Kaneko, K.; Liu, H.; Kowalski, K., Electronic Structure Simulations in the Cloud Computing Environment. J Chem Phys 2024, 161. http://dx.doi.org/10.1063/5.0226437 

Bylaska, E. J.; Song, D.; Ilton, E. S.; Bagusetty, A.; Bross, D.; Vazquez-Mayagoitia, A.; Hernandez, R.; Gawande, N. Nwchem and Nwchemex Plane-Wave Methods in Comprehensive Computational Chemistry, 2024; pp 518-543.

Bylaska, E. J.; Panyala, A.; Bauman, N. P.; Peng, B.; Pathak, H.; Mejia-Rodriguez, D.; Govind, N.; Williams-Young, D. B.; Apra, E.; Bagusetty, A.; Mutlu, E.; Jackson, K. A.; Baruah, T.; Yamamoto, Y.; Pederson, M. R.; Withanage, K. P. K.; Pedroza-Montero, J. N.; Bilbrey, J. A.; Choudhury, S.; Firoz, J.; Herman, K. M.; Xantheas, S. S.; Rigor, P.; Vila, F. D.; Rehr, J. J.; Fung, M.; Grofe, A.; Johnston, C.; Baker, N.; Kaneko, K.; Liu, H.; Kowalski, K., Electronic Structure Simulations in the Cloud Computing Environment. J Chem Phys 2024, 161. http://dx.doi.org/10.1063/5.0226437 

Dinpajooh, M.; Biasin, E.; Nienhuis, E. T.; Mergelsberg, S. T.; Benmore, C. J.; Schenter, G. K.; Fulton, J. L.; Kathmann, S. M.; Mundy, C. J., Detecting Underscreening and Generalized Kirkwood Transitions in Aqueous Electrolytes. J Chem Phys2024, 161. http://dx.doi.org/10.1063/5.0234518 

Dinpajooh, M.; Intan, N. N.; Duignan, T. T.; Biasin, E.; Fulton, J. L.; Kathmann, S. M.; Schenter, G. K.; Mundy, C. J., Beyond the Debye-Hückel Limit: Towards a General Theory for Concentrated Electrolytes. J Chem Phys 2024, 161. http://dx.doi.org/10.1063/5.0238708 

Dunning, T. H.; Cooper, D. L.; Xu, L. T.; Karadakov, P. B. Spin-Coupled Generalized Valence Bond Theory: An Appealing Orbital Theory of the Electronic Structure of Atoms and Molecules in Comprehensive Computational Chemistry (First Edition); Yáñez, M., Boyd, R. J., Eds.; Elsevier: Oxford, 2024; pp 354-402.

Dhawan, D.; Zgid, D.; Motta, M., Quantum Algorithm for Imaginary-Time Green's Functions. J Chem Theory Comput 2024, 20, 4629-4638. http://dx.doi.org/10.1021/acs.jctc.4c00241 

Fang X., K. Yin, Y. Zhu, J. Ruan, D. Tullsen, Z. Liang, and A. Sornborger, et al. 2024. "CaliScalpel: In-Situ and Fine-Grained Qubit Calibration Integrated with Surface Code Quantum Error Correction." In International Symposium on Computer Architecture (ISCA). PNNL-SA-207141

Friesecke, G.; Barcza, G.; Legeza, Ö., Predicting the Fci Energy of Large Systems to Chemical Accuracy from Restricted Active Space Density Matrix Renormalization Group Calculations. Journal of Chemical Theory and Computation 2024, 20, 87-102. http://dx.doi.org/10.1021/acs.jctc.3c01001 

Helal, H.; Firoz, J.; Bilbrey, J. A.; Sprueill, H.; Herman, K. M.; Krell, M. M.; Murray, T.; Roldan, M. L.; Kraus, M.; Li, A.; Das, P.; Xantheas, S. S.; Choudhury, S., Acceleration of Graph Neural Network-Based Prediction Models in Chemistry Via Co-Design Optimization on Intelligence Processing Units. Journal of Chemical Information and Modeling 2024, 64, 1568-1580. http://dx.doi.org/10.1021/acs.jcim.3c01312 

Hirata, S.; Grabowski, I.; Ortiz, J. V.; Bartlett, R. J., Nonconvergence of the Feynman-Dyson Diagrammatic Perturbation Expansion of Propagators. Physical Review A 2024, 109. http://dx.doi.org/10.1103/PhysRevA.109.052220 

Hoffman, M. P.; Xantheas, S. S., The Many-Body Expansion for Aqueous Systems Revisited: Iv. Stabilization of Halide-Anion Pairs in Small Water Clusters. J Phys Chem A2024, 128, 9876-9892. http://dx.doi.org/10.1021/acs.jpca.4c05427 

Intan, N. N.; Sorenson, B. A.; Choi, Y. K.; Choi, J. J.; Fulton, J. L.; Govind, N.; Kelly, S. D.; Schenter, G. K.; Clancy, P.; Mundy, C. J., Smaller Is Better: The Case for Lower-Order Iodoplumbate Species Dominating Mapbi3/Dimethylformamide Solutions. Chemistry of Materials 2024, 36, 8424-8436. http://dx.doi.org/10.1021/acs.chemmater.4c01523 

Kan S., Z. Du, M. Palma, S.A. Stein, C. Liu, W. Wei, and J. Chen, et al. 2024. "Scalable Circuit Cutting and Scheduling in a Resource-constrained and Distributed Quantum System." In IEEE International Conference on Quantum Computing and Engineering (QCE). PNNL-SA-204678.

Kowalski, K.; Peng, B.; Bauman, N. P., The Accuracies of Effective Interactions in Downfolding Coupled-Cluster Approaches for Small-Dimensionality Active Spaces. Journal of Chemical Physics 2024, 160. http://dx.doi.org/10.1063/5.0207534 

Larsen, C. B.; Ledbetter, K.; Nascimento, D. R.; Biasin, E.; Qureshi, M.; Nowak, S. H.; Sokaras, D.; Govind, N.; Cordones, A. A., Metal-Ligand Covalency in the Valence Excited States of Metal Dithiolenes Revealed by S 1s3p Resonant Inelastic X-Ray Scattering. Journal of the American Chemical Society 2024, 146, 28561-71. http://dx.doi.org/10.1021/jacs.4c11667 

Lee, J.; Lu, Z.; Wu, Z.; Ophus, C.; Schenter, G. K.; De Yoreo, J. J.; Chun, J.; Li, D., Defect Self-Elimination in Nanocube Superlattices through the Interplay of Brownian, Van Der Waals, and Ligand-Based Forces and Torques. ACS Nano 2024. http://dx.doi.org/10.1021/acsnano.3c08610 

London, N.; Bu, S. Y.; Johnson, B.; Ananth, N., Mean-Field Ring Polymer Rates Using a Population Dividing Surface. Journal of Physical Chemistry A 2024, 128, 5730-5739. http://dx.doi.org/10.1021/acs.jpca.4c00005 

Zheng M., B. Peng, A. Li, X. Yang, and K. Kowalski. 2024. "Unleashed from Constrained Optimization: Quantum Computing for Quantum Chemistry Employing Generator Coordinate Inspired Method." npj Quantum Information. PNNL-SA-193552. http://dx.doi.org/10.1038/s41534-024-00916-8 

Matousek, M.; Vu, N.; Govind, N.; Foley, J. J. t.; Veis, L., Polaritonic Chemistry Using the Density Matrix Renormalization Group Method. J Chem Theory Comput 2024, 20, 9424-9434. http://dx.doi.org/10.1021/acs.jctc.4c00986 

Mukhopadhyay, P.; Stetina, T. F.; Wiebe, N., Quantum Simulation of the First-Quantized Pauli-Fierz Hamiltonian. PRX Quantum 2024, 5, 010345. http://dx.doi.org/10.1103/PRXQuantum.5.010345 

Mejia-Rodriguez, D., Exploiting a Derivative Discontinuity Estimate for Accurate  G0w0 Ionization Potentials and Electron Affinities. Electronic Structure 2024, 6. http://dx.doi.org/10.1088/2516-1075/ad3124 

Menczer, A.; Kapás, K.; Werner, M. A.; Legeza, Ö., Two-Dimensional Quantum Lattice Models Via Mode Optimized Hybrid Cpu-Gpu Density Matrix Renormalization Group Method. Physical Review B 2024, 109, 195148. http://dx.doi.org/10.1103/PhysRevB.109.195148 

Okura, Y.; Santis, G. D.; Hirata, K.; Melissas, V. S.; Ishiuchi, S.-i.; Fujii, M.; Xantheas, S. S., Switching of Protonation Sites in Hydrated Nicotine Via a Grotthuss Mechanism. Journal of the American Chemical Society 2024, 146, 3023-3030. http://dx.doi.org/10.1021/jacs.3c08922 

Okura, Y.; Santis, G. D.; Hirata, K.; Xantheas, S. S.; Fujii, M.; Ishiuchi, S. I., The Gas Phase Protonation Sites of Six Naturally Occurring Nicotinoids. The Journal of Physical Chemistry Letters 2024, 15, 6966-6973. http://dx.doi.org/10.1021/acs.jpclett.4c01206 

Osváth, B.; Barcza, G.; Legeza, Ö.; Dóra, B.; Oroszlány, L., Electronic Ladder Model Harboring ℤ4 Parafermions. Physical Review B2024, 110, 085304. http://dx.doi.org/10.1103/PhysRevB.110.085304 

Pathak, H.; Panyala, A.; Peng, B.; Bauman, N. P.; Mutlu, E.; Rehr, J. J.; Vila, F. D.; Kowalski, K., Real-Time Equation-of-Motion Coupled-Cluster Cumulant Green's Function Method: Heterogeneous Parallel Implementation Based on the Tensor Algebra for Many-Body Methods Infrastructure. Journal of Chemical Theory and Computation 2024, 19, 2248-2257. http://dx.doi.org/10.1021/acs.jctc.3c00045 

Peng, B.; Pathak, H.; Panyala, A.; Vila, F. D.; Rehr, J. J.; Kowalski, K., Exploring the Exact Limits of the Real-Time Equation-of-Motion Coupled Cluster Cumulant Green's Functions. J Chem Phys 2024, 161. http://dx.doi.org/10.1063/5.0233339

Peng, B.; Kowalski, K., Integrating Subsystem Embedding Subalgebras and Coupled Cluster Green's Function: A Theoretical Foundation for Quantum Embedding in Excitation Manifold. Electronic Structure 2024, 6. http://dx.doi.org/10.1088/2516-1075/ad1e3b 

Santis, G. D.; Herman, K. M.; Heindel, J. P.; Xantheas, S. S., Descriptors of Water Aggregation. Journal of Chemical Physics 2024, 160. http://dx.doi.org/10.1063/5.0179815 

Santis, G. D.; Okura, Y.; Hirata, K.; Ishiuchi, S.-I.; Fujii, M.; Xantheas, S. S., Affinity of Nicotinoids to a Model Nnicotinic Acetylcholine Receptor (Nachr) Binding Pocket in the Human Brain. Journal of Physical Chemistry B 2024, 128, 4577-4589. http://dx.doi.org/10.1021/acs.jpcb.3c07919 

Simon, S.; Santagati, R.; Degroote, M.; Moll, N.; Streif, M.; Wiebe, N., Improved Precision Scaling for Simulating Coupled Quantum-Classical Dynamics. PRX Quantum 2024, 5, 010343. http://dx.doi.org/10.1103/PRXQuantum.5.010343 

Song, S.; Pinar Solé, A.; Matěj, A.; Li, G.; Stetsovych, O.; Soler, D.; Yang, H.; Telychko, M.; Li, J.; Kumar, M.; Chen, Q.; Edalatmanesh, S.; Brabec, J.; Veis, L.; Wu, J.; Jelinek, P.; Lu, J., Highly Entangled Polyradical Nanographene with Coexisting Strong Correlation and Topological Frustration. Nature Chemistry2024, 16, 938-944. http://dx.doi.org/10.1038/s41557-024-01453-9 

Szombathy, D.; Werner, M. A.; Moca, C. P.; Legeza, Ö.; Hamo, A.; Ilani, S.; Zaránd, G., Collective Tunneling of a Wigner Necklace in Carbon Nanotubes. Physical Review B 2024, 109, 245139. http://dx.doi.org/10.1103/PhysRevB.109.245139 

Tichai, A.; Kapás, K.; Miyagi, T.; Werner, M. A.; Legeza, Ö.; Schwenk, A.; Zarand, G., Spectroscopy of N = 50 Isotones with the Valence-Space Density Matrix Renormalization Group. Physics Letters B 2024, 855. http://dx.doi.org/10.1016/j.physletb.2024.138841 

Tzeli, D.; Xantheas, S. S., Erratum: "Breaking Covalent Bonds in the Context of the Many-Body Expansion (Mbe). I. The Purported 'First Row Anomaly' in Xhn (X = C, Si, Ge, Sn; N = 1-4)" [J. Chem. Phys. 156, 244303 (2022)]. Journal of Chemical Physics 2024, 160, 059901. http://dx.doi.org/10.1063/5.0196893 

Vu, N.; Mejia-Rodriguez, D.; Bauman, N. P.; Panyala, A.; Mutlu, E.; Govind, N.; Foley, J. J., Cavity Quantum Electrodynamics Complete Active Space Configuration Interaction Theory. Journal of Chemical Theory and Computation 2024, 20, 1214-1227. http://dx.doi.org/10.1021/acs.jctc.3c01207 

Wang, H. W.; Nienhuis, E. T.; Graham, T. R.; Pouvreau, M.; Reynolds, J. G.; Bowden, M.; Schenter, G. K.; De Yoreo, J. J.; Rosso, K. M.; Pearce, C. I., Resolving Intermediates during the Growth of Aluminum Deuteroxide (Hydroxide) Polymorphs in High Chemical Potential Solutions. Commun Chem 2024, 7, 199. http://dx.doi.org/10.1038/s42004-024-01285-1 

Windom, Z. W.; Claudino, D.; Bartlett, R. J., A New “Gold Standard”: Perturbative Triples Corrections in Unitary Coupled Cluster Theory and Prospects for Quantum Computing. The Journal of Chemical Physics 2024, 160. http://dx.doi.org/10.1063/5.0202567 

Xie, S. Q.; Wang, C. Q.; Hu, W. D.; Hu, J. Z.; Wang, Y.; Dong, Z.; Intan, N. N.; Pfaendtner, J.; Lin, H. F., Chemical Recycling of Post-Consumer Polyester Wastes Using a Tertiary Amine Organocatalyst. Cell Reports Physical Science2024, 5. http://dx.doi.org/10.1016/j.xcrp.2024.102145 

Yin K., X. Fang, T.S. Humble, A. Li, Y. Shi, and Y. Ding. 2024. "FlexiSCD: Flexible Surface Code Deformer for Dynamic Defects." In IEEE/ACM International Symposium on Microarchitecture. PNNL-SA-201279.

Yin K., X. Fang, J. Ruan, H. Zhang, D. Tullsen, A. Sornborger, and C. Liu, et al. 2024. "SymBreak: Mitigating Quantum Degeneracy Issues in QLDPC Code Decoders by Breaking Symmetry." In International Symposium on Computer Architecture (ISCA). PNNL-SA-207140.

Zuzak, R.; Kumar, M.; Stoica, O.; Soler-Polo, D.; Brabec, J.; Pernal, K.; Veis, L.; Blieck, R.; Echavarren, A. M.; Jelinek, P.; Godlewski, S., On-Surface Synthesis and Determination of the Open-Shell Singlet Ground State of Tridecacene. Angewandte Chemie International Edition 2024, 63, e202317091. http://dx.doi.org/10.1002/anie.202317091

Zhang, T.; Banerjee, S.; Koulias, L. N.; Valeev, E. F.; DePrince, A. E., 3rd; Li, X., Dirac-Coulomb-Breit Molecular Mean-Field Exact-Two-Component Relativistic Equation-of-Motion Coupled-Cluster Theory. J Phys Chem A 2024, 128, 3408-3418. http://dx.doi.org/10.1021/acs.jpca.3c08167

Zheng, M.; Peng, B.; Li, A.; Yang, X.; Kowalski, K., Unleashed from Constrained Optimization: Quantum Computing for Quantum Chemistry Employing Generator Coordinate Inspired Method. npj Quantum Information 2024, 10. http://dx.doi.org/10.1038/s41534-024-00916-8

2023

Abraham, E.; Dinpajooh, M.; Climent, C.; Nitzan, A., Heat Transport with a Twist. J Chem Phys 2023, 159, 174904. http://dx.doi.org/10.1063/5.0171680 

Banerjee, S.; Zhang, T.; Dyall, K. G.; Li, X., Relativistic Resolution-of-the-Identity with Cholesky Integral Decomposition. J Chem Phys 2023, 159. http://dx.doi.org/10.1063/5.0161871 

Barcza, G.; Pershin, A.; Gali, A.; Legeza, Ö., Excitation Spectra of Fully Correlated Donor-Acceptor Complexes by Density Matrix Renormalisation Group. Molecular Physics 2023, 121, e2130834. http://dx.doi.org/10.1080/00268976.2022.2130834 

Beran, P.; Pernal, K.; Pavošević, F.; Veis, L., Projection-Based Density Matrix Renormalization Group in Density Functional Theory Embedding. The Journal of Physical Chemistry Letters 2023, 14, 716-722. http://dx.doi.org/10.1021/acs.jpclett.2c03298 

Cao, W.; Wen, H.; Xantheas, S. S.; Wang, X. B., The Primary Gas Phase Hydration Shell of Hydroxide. Sci Adv 2023, 9, eadf4309. http://dx.doi.org/10.1126/sciadv.adf4309 

Carter-Fenk, K.; Johnson, B. A.; Herbert, J. M.; Schenter, G. K.; Mundy, C. J., Birth of the Hydrated Electron Via Charge-Transfer-to-Solvent Excitation of Aqueous Iodide. J Phys Chem Lett 2023, 14, 870-878. http://dx.doi.org/10.1021/acs.jpclett.2c03460 

Claudino, D.; Peng, B.; Kowalski, K.; Humble, T. S., Modeling Singlet Fission on a Quantum Computer. J. Phys. Chem. Lett. 2023, 14, 6. http://dx.doi.org/10.1021/acs.jpclett.3c01106 

Chen, R.; Dinpajooh, M.; Nitzan, A., Quantum Bath Augmented Stochastic Nonequilibrium Atomistic Simulations for Molecular Heat Conduction. J Chem Phys 2023, 159, 134110. http://dx.doi.org/10.1063/5.0168117 

Depastas, T.; Souliotis, G. A.; Tzeli, D.; Xantheas, S. S., Many-Body Expansion for Light Nuclear Systems. Physical Review C 2023, 107, 044004. http://dx.doi.org/10.1103/PhysRevC.107.044004 

Di Felice, R.; Mayes, M. L.; Richard, R. M.; Williams-Young, D. B.; Chan, G. K.; de Jong, W. A.; Govind, N.; Head-Gordon, M.; Hermes, M. R.; Kowalski, K.; Li, X.; Lischka, H.; Mueller, K. T.; Mutlu, E.; Niklasson, A. M. N.; Pederson, M. R.; Peng, B.; Shepard, R.; Valeev, E. F.; van Schilfgaarde, M.; Vlaisavljevich, B.; Windus, T. L.; Xantheas, S. S.; Zhang, X.; Zimmerman, P. M., A Perspective on Sustainable Computational Chemistry Software Development and Integration. J Chem Theory Comput 2023, 19, 7056-7076. http://dx.doi.org/10.1021/acs.jctc.3c00419 

Drwal, D.; Matousek, M.; Golub, P.; Tucholska, A.; Hapka, M.; Brabec, J.; Veis, L.; Pernal, K., Role of Spin Polarization and Dynamic Correlation in Singlet–Triplet Gap Inversion of Heptazine Derivatives. Journal of Chemical Theory and Computation 2023, 19, 7606-7616. http://dx.doi.org/10.1021/acs.jctc.3c00781 

Dunning, T. H., Jr.; Gordon, M. S.; Xantheas, S. S., The Nature of the Chemical Bond. The Journal of Chemical Physics 2023, 158, 130401. http://dx.doi.org/10.1063/5.0148500 

Dhakal, D.; Driscoll, D. M.; Govind, N.; Stack, A. G.; Rampal, N.; Schenter, G.; Mundy, C. J.; Fister, T. T.; Fulton, J. L.; Balasubramanian, M.; Seidler, G. T., The Evolution of Solvation Symmetry and Composition in Zn Halide Aqueous Solutions from Dilute to Extreme Concentrations. Phys Chem Chem Phys 2023, 25, 22650-22661. http://dx.doi.org/10.1039/d3cp01559a 

Dinpajooh, M.; Millis, J.; Donley, J. P.; Guenza, M. G., Chemical Potential of Flexible Polymer Liquid in a Coarse-Grained Representation. J Phys Chem B 2023, 128, 1275-1288. http://dx.doi.org/10.1021/acs.jpcb.3c06795 

Finney, J. M.; Choi, T. H.; Huchmala, R. M.; Heindel, J. P.; Xantheas, S. S.; Jordan, K. D.; McCoy, A. B., Isotope Effects in the Zundel-Eigen Isomerization of H+(H2o)6. J Phys Chem Lett 2023, 14, 4666-4672. http://dx.doi.org/10.1021/acs.jpclett.3c00952 

Foley, J. J., IV; McTague, J. F.; DePrince, A. E., III, Ab Initio Methods for Polariton Chemistry. Chemical Physics Reviews 2023, 4. http://dx.doi.org/10.1063/5.0167243 

Gomes, N.; Williams-Young, D. B.; de Jong, W. A., Computing the Many-Body Green's Function with Adaptive Variational Quantum Dynamics. Journal of Chemical Theory and Computation 2023, 19, 3313-3323. http://dx.doi.org/10.1021/acs.jctc.3c00150 

Golub, P.; Antalik, A.; Beran, P.; Brabec, J., Mutual Information Prediction for Strongly Correlated Systems. Chemical Physics Letters 2023, 813, 140297. http://dx.doi.org/10.1016/j.cplett.2023.140297 

Heindel, J. P.; Herman, K. M.; Xantheas, S. S., Many-Body Effects in Aqueous Systems: Synergies between Interaction Analysis Techniques and Force Field Development. Annual Review of Physical Chemistry 2023, 74, 337-360. http://dx.doi.org/10.1146/annurev-physchem-062422-023532 

Heindel, J. P.; Herman, K. M.; Xantheas, S. S., Many-Body Effects in Aqueous Systems: Synergies between Interaction Analysis Techniques and Force Field Development. Annual Review of Physical Chemistry 2023, 74, 337-360. http://dx.doi.org/10.1146/annurev-physchem-062422-023532 

Herman, K. M.; Apra, E.; Xantheas, S. S., A Critical Comparison of Ch···Π Versus Π···Π  Interactions in the Benzene Dimer: Obtaining Benchmarks at the Ccsd(T) Level and Assessing the Accuracy of Lower Scaling Methods. Phys. Chem. Chem. Phys. 2023, 25, 4824-4838. http://dx.doi.org/10.1039/d2cp04335a 

Herman, K. M.; Xantheas, S. S., An Extensive Assessment of the Performance of Pairwise and Many-Body Interaction Potentials in Reproducing Ab Initio Benchmark Binding Energies for Water Clusters N = 2–25. Phys. Chem. Chem. Phys. 2023, 25, 7120-7143. http://dx.doi.org/10.1039/D2CP03241D 

Herman, K. M.; Stone, A. J.; Xantheas, S. S., Accurate Calculation of Many-Body Energies in Water Clusters Using a Classical Geometry-Dependent Induction Model. Journal of Chemical Theory and Computation 2023, 19, 6805-6815. http://dx.doi.org/10.1021/acs.jctc.3c00575 

Herman, K. M.; Xantheas, S. S., A Formulation of the Many-Body Expansion (Mbe) for Periodic Systems: Application to Several Ice Phases. The Journal of Physical Chemistry Letters 2023, 14, 989-999. http://dx.doi.org/10.1021/acs.jpclett.2c03822 

Hirata, S., Nonvanishing Quadrature Derivatives in the Analytical Gradients of Density Functional Energies in Crystals and Helices. Molecular Physics 2023, 121, e2086500. http://dx.doi.org/10.1080/00268976.2022.2086500 

Hirata, S.; Shigeta, Y.; Xantheas, S. S.; Bartlett, R. J., Helical Organic and Inorganic Polymers. The Journal of Physical Chemistry B 2023, 127, 3556-3583. http://dx.doi.org/10.1021/acs.jpcb.3c00620 

Intan, N. N.; Pfaendtner, J., Role of Surface Features on the Initial Dissolution of Ch3nh3pbi3 Perovskite in Liquid Water: An Ab Initio Molecular Dynamics Study. ACS Nano 2023, 17, 22371-22387. http://dx.doi.org/10.1021/acsnano.3c04601 

Kowalski, K., Sub-System Self-Consistency in Coupled Cluster Theory. Journal of Chemical Physics 2023, 158, 8. http://dx.doi.org/10.1063/5.0125696 

Kowalski, K.; Bauman, N. P., Fock-Space Schrieffer-Wolff Transformation: Classically-Assisted Rank-Reduced Quantum Phase Estimation Algorithm. Appl. Sci.-Basel 2023, 13, 18. http://dx.doi.org/10.3390/app13010539 

Kowalski, K.; Bauman, N. P., Quantum Flow Algorithms for Simulating Many-Body Systems on Quantum Computers. Phys. Rev. Lett. 2023, 131, 200601. http://dx.doi.org/10.1103/PhysRevLett.131.200601 

Máté, M.; Petrov, K.; Szalay, S.; Legeza, Ö., Compressing Multireference Character of Wave Functions Via Fermionic Mode Optimization. Journal of Mathematical Chemistry 2023, 61, 362-375. http://dx.doi.org/10.1007/s10910-022-01379-y 

Mato, J.; Willow, S. Y.; Werhahn, J. C.; Xantheas, S. S., The Back Door to the Surface Hydrated Electron. J Phys Chem Lett 2023, 14, 8221-8226. http://dx.doi.org/10.1021/acs.jpclett.3c01479 

Mato, J.; Willow, S. Y.; Werhahn, J. C.; Xantheas, S. S., The Back Door to the Surface Hydrated Electron. The Journal of Physical Chemistry Letters 2023, 14, 8221-8226. http://dx.doi.org/10.1021/acs.jpclett.3c01479 

Matoušek, M.; Hapka, M.; Veis, L.; Pernal, K., Toward More Accurate Adiabatic Connection Approach for Multireference Wavefunctions. The Journal of Chemical Physics 2023, 158, 054105. http://dx.doi.org/10.1063/5.0131448 

Mejia-Rodriguez, D.; Aprà, E.; Autschbach, J.; Bauman, N. P.; Bylaska, E. J.; Govind, N.; Hammond, J. R.; Kowalski, K.; Kunitsa, A.; Panyala, A.; Peng, B.; Rehr, J. J.; Song, H.; Tretiak, S.; Valiev, M.; Vila, F. D., Nwchem: Recent and Ongoing Developments. Journal of Chemical Theory and Computation 2023, 19, 7077-7096. http://dx.doi.org/10.1021/acs.jctc.3c00421 

Mejia-Rodriguez, D.; Apra, E.; Autschbach, J.; Bauman, N. P.; Bylaska, E. J.; Govind, N.; Hammond, J. R.; Kowalski, K.; Kunitsa, A.; Panyala, A.; Peng, B.; Rehr, J. J.; Song, H.; Tretiak, S.; Valiev, M.; Vila, F. D., Nwchem: Recent and Ongoing Developments. J Chem Theory Comput 2023, 19, 7077-7096. http://dx.doi.org/10.1021/acs.jctc.3c00421 

Mejia-Rodriguez, D.; Aprà, E.; Autschbach, J.; Bauman, N. P.; Bylaska, E. J.; Govind, N.; Hammond, J. R.; Kowalski, K.; Kunitsa, A.; Panyala, A.; Peng, B.; Rehr, J. J.; Song, H.; Tretiak, S.; Valiev, M.; Vila, F. D., Nwchem: Recent and Ongoing Developments. Journal of Chemical Theory and Computation 2023, 19, 7077-7096. http://dx.doi.org/10.1021/acs.jctc.3c00421 

Mutlu, E.; Panyala, A.; Gawande, N.; Bagusetty, A.; Glabe, J.; Kim, J.; Kowalski, K.; Bauman, N. P.; Peng, B.; Pathak, H.; Brabec, J.; Krishnamoorthy, S., Tamm: Tensor Algebra for Many-Body Methods. The Journal of Chemical Physics 2023, 159, 024801. http://dx.doi.org/10.1063/5.0142433 

Song, D.; Bauman, N. P.; Prawiroatmodjo, G.; Peng, B.; Granade, C.; Rosso, K. M.; Low, G. H.; Roetteler, M.; Kowalski, K.; Bylaska, E. J., Periodic Plane-Wave Electronic Structure Calculations on Quantum Computers. Materials Theory 2023, 7. http://dx.doi.org/10.1186/s41313-022-00049-5 

Shee, A.; Yeh, C.-N.; Peng, B.; Kowalski, K.; Zgid, D., Triple Excitations in Green’s Function Coupled Cluster Solver for Studies of Strongly Correlated Systems in the Framework of Self-Energy Embedding Theory. The Journal of Physical Chemistry Letters 2023, 14, 2416-2424. http://dx.doi.org/10.1021/acs.jpclett.2c03616 

Tichai, A.; Knecht, S.; Kruppa, A. T.; Legeza, Ö.; Moca, C. P.; Schwenk, A.; Werner, M. A.; Zarand, G., Combining the in-Medium Similarity Renormalization Group with the Density Matrix Renormalization Group: Shell Structure and Information Entropy. Physics Letters B 2023, 845, 138139. http://dx.doi.org/https://doi.org/10.1016/j.physletb.2023.138139 

Unsleber, J. P.; Liu, H.; Talirz, L.; Weymuth, T.; Mörchen, M.; Grofe, A.; Wecker, D.; Stein, C. J.; Panyala, A.; Peng, B.; Kowalski, K.; Troyer, M.; Reiher, M., High-Throughput Ab Initio Reaction Mechanism Exploration in the Cloud with Automated Multi-Reference Validation. The Journal of Chemical Physics 2023, 158, 084803. http://dx.doi.org/10.1063/5.0136526 

Wang, M.; Hua, F.; Liu, C.; Bauman, N.; Kowalski, K.; Claudino, D.; Humble, T.; Nair, P.; Li, A. In Proceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis; Association for Computing Machinery: Denver, CO, 2023; pp 1460-1467.

Wang, Q.; Qin, Z.; Hou, G. L.; Yang, Z.; Valiev, M.; Wang, X. B.; Zheng, X.; Cui, Z., Properties of Gaseous Deprotonated L-Cysteine S-Sulfate Anion [Cyss-So3]-: Intramolecular H-Bond Network, Electron Affinity, Chemically Active Site, and Vibrational Fingerprints. Int J Mol Sci 2023, 24, 1682. http://dx.doi.org/10.3390/ijms24021682 

Werner, M. A.; Moca, C. P.; Kormos, M.; Legeza, Ö.; Dóra, B.; Zaránd, G., Spectroscopic Evidence for Engineered Hadronic Bound State Formation in Repulsive Fermionic Su(N) Hubbard Systems. Physical Review Research 2023, 5, 043020. http://dx.doi.org/10.1103/PhysRevResearch.5.043020 

Williams-Young, D. B.; Tubman, N. M.; Mejuto-Zaera, C.; de Jong, W. A., A Parallel, Distributed Memory Implementation of the Adaptive Sampling Configuration Interaction Method. The Journal of Chemical Physics 2023, 158, 214109. http://dx.doi.org/10.1063/5.0148650 

Zheng, M.; Peng, B.; Wiebe, N.; Li, A.; Yang, X.; Kowalski, K., Quantum Algorithms for Generator Coordinate Methods. Physical Review Research 2023, 5, 023200. http://dx.doi.org/10.1103/PhysRevResearch.5.023200 

2022

Aulicino, J. C.; Keen, T.; Peng, B., State Preparation and Evolution in Quantum Computing: A Perspective from Hamiltonian Moments. International Journal of Quantum Chemistry 2022, 122, 23. http://dx.doi.org/10.1002/qua.26853 

Bauman, N. P.; Kowalski, K., Coupled Cluster Downfolding Methods: The Effect of Double Commutator Terms on the Accuracy of Ground-State Energies. Journal of Chemical Physics 2022, 156, 10. http://dx.doi.org/10.1063/5.0076260 

Bagusetty, A.; Panyala, A.; Brown, G.; Kirk, J. In 2022 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC), 2022; pp 81-88.

Barcza, G.; Werner, M. A.; Zaránd, G.; Pershin, A.; Benedek, Z.; Legeza, Ö.; Szilvási, T., Toward Large-Scale Restricted Active Space Calculations Inspired by the Schmidt Decomposition. The Journal of Physical Chemistry A 2022, 126, 9709-9718. http://dx.doi.org/10.1021/acs.jpca.2c05952 

Bylaska, E. J.; Tratnyek, P. G.; Torralba-Sanchez, T. L.; Edwards, K. C.; Dixon, D. A.; Pignatello, J. J.; Xu, W., Computational Predictions of the Hydrolysis of 2,4,6-Trinitrotoluene (Tnt) and 2,4-Dinitroanisole (Dnan). Journal of Physical Chemistry A 2022, 126, 9059-9075. http://dx.doi.org/10.1021/acs.jpca.2c06014   

Caruso, A.; Zhu, X.; Fulton, J. L.; Paesani, F., Accurate Modeling of Bromide and Iodide Hydration with Data-Driven Many-Body Potentials. J Phys Chem B 2022, 126, 8266-8278. http://dx.doi.org/10.1021/acs.jpcb.2c04698 

Claudino, D., The Basics of Quantum Computing for Chemists. International Journal of Quantum Chemistry 2022, 122, e26990. http://dx.doi.org/10.1002/qua.26990 

Chuev, G.; Dinpajooh, M.; Valiev, M., Molecular-Based Analysis of Nanoparticle Solvation: Classical Density Functional Approach. Journal of Chemical Physics 2022, 157. http://dx.doi.org/10.1063/5.012881 

Cruz, J. C.; Garza, J.; Yanai, T.; Hirata, S., Stochastic Evaluation of Four-Component Relativistic Second-Order Many-Body Perturbation Energies: A Potentially Quadratic-Scaling Correlation Method. The Journal of Chemical Physics 2022, 156, 224102. http://dx.doi.org/10.1063/5.0091973 

Dunning, T. H., Jr.; Xu, L. T., Dynamical Electron Correlation and the Chemical Bond. Ii. Recoupled Pair Bonds in the A4σ− States of Ch and Cf. The Journal of Chemical Physics 2022, 157, 084124. http://dx.doi.org/10.1063/5.0104693 

Friesecke, G.; Graswald, B. R.; Legeza, Ö., Exact Matrix Product State Representation and Convergence of a Fully Correlated Electronic Wavefunction in the Infinite-Basis Limit. Physical Review B 2022, 105, 165144. http://dx.doi.org/10.1103/PhysRevB.105.165144 

Gebhard, F.; Bauerbach, K.; Legeza, Ö., Accurate Localization of Kosterlitz-Thouless-Type Quantum Phase Transitions for One-Dimensional Spinless Fermions. Physical Review B 2022, 106, 205133. http://dx.doi.org/10.1103/PhysRevB.106.205133 

Herman, K. M.; Stone, A. J.; Xantheas, S. S., A Classical Model for Three-Body Interactions in Aqueous Ionic Systems. Journal of Chemical Physics 2022, 157, 11. http://dx.doi.org/10.1063/5.0095739 

Hirata, S., General Solution to the Kohn–Luttinger Nonconvergence Problem. Chemical Physics Letters 2022, 800, 139668. http://dx.doi.org/https://doi.org/10.1016/j.cplett.2022.139668 

Heindel, J. P.; Kirov, M. V.; Xantheas, S. S., Hydrogen Bond Arrangements in (H2o)20, 24, 28 Clathrate Hydrate Cages: Optimization and Many-Body Analysis. Journal of Chemical Physics 2022, 157, 13. http://dx.doi.org/10.1063/5.0095335 

Kang, C. S. P.; Bauman, N. P.; Krishnamoorthy, S.; Kowalski, K., Optimized Quantum Phase Estimation for Simulating Electronic States in Various Energy Regimes. Journal of Chemical Theory and Computation 2022, 18, 10. http://dx.doi.org/10.1021/acs.jctc.2c00577 

Keen, T., Hybrid Quantum-Classical Approach for Coupled-Cluster Green’s Function Theory. Quantum 2022, 6, 675. http://dx.doi.org/10.22331/q-2022-03-30-675 

Kumawat, N.; Tucs, A.; Bera, S.; Chuev, G. N.; Valiev, M.; Fedotova, M. V.; Kruchinin, S. E.; Tsuda, K.; Sljoka, A.; Chakraborty, A., Site Density Functional Theory and Structural Bioinformatics Analysis of the Sars-Cov Spike Protein and Hace2 Complex. Molecules 2022, 27, 799. http://dx.doi.org/10.3390/molecules27030799 

Kruppa, A. T.; Kovács, J.; Salamon, P.; Legeza, Ö.; Zaránd, G., Entanglement and Seniority. Physical Review C 2022, 106, 024303. http://dx.doi.org/10.1103/PhysRevC.106.024303 

Leszczyk, A.; Máté, M.; Legeza, Ö.; Boguslawski, K., Assessing the Accuracy of Tailored Coupled Cluster Methods Corrected by Electronic Wave Functions of Polynomial Cost. Journal of Chemical Theory and Computation 2022, 18, 96-117. http://dx.doi.org/10.1021/acs.jctc.1c00284 

Ma, X.; Rohdenburg, M.; Knorke, H.; Kawa, S.; Liu, J. K. Y.; Apra, E.; Asmis, K. R.; Azov, V. A.; Laskin, J.; Jenne, C.; Kenttamaa, H. I.; Warneke, J., Binding of Saturated and Unsaturated C-6-Hydrocarbons to the Electrophilic Anion B12br11 (-): A Systematic Mechanistic Study. Phys. Chem. Chem. Phys. 2022, 24, 21759-21772. http://dx.doi.org/10.1039/d2cp01042a 

Mato, J.; Tzeli, D.; Xantheas, S. S., The Many-Body Expansion for Metals. I. The Alkaline Earth Metals Be, Mg, and Ca. Journal of Chemical Physics 2022, 157, 21. http://dx.doi.org/10.1063/5.0094598 

Mejia-Rodriguez, D.; Kunitsa, A.; Apra, E.; Govind, N., Basis Set Selection for Molecular Core-Level Gw Calculations. Journal of Chemical Theory and Computation 2022, 18, 4919-4926. http://dx.doi.org/10.1021/acs.jctc.2c00247 

Mejuto-Zaera, C.; Tzeli, D.; Williams-Young, D.; Tubman, N. M.; Matousek, M.; Brabec, J.; Veis, L.; Xantheas, S. S.; de Jong, W. A., The Effect of Geometry, Spin, and Orbital Optimization in Achieving Accurate, Correlated Results for Iron-Sulfur Cubanes. Journal of Chemical Theory and Computation 2022, 18, 687-702. http://dx.doi.org/10.1021/acs.jctc.1c00830 

Moca, C. P.; Werner, M. A.; Legeza, Ö.; Prosen, T.; Kormos, M.; Zaránd, G., Simulating Lindbladian Evolution with Non-Abelian Symmetries: Ballistic Front Propagation in the Su(2) Hubbard Model with a Localized Loss. Physical Review B 2022, 105, 195144. http://dx.doi.org/10.1103/PhysRevB.105.195144 

O'Brien, T. E.; Streif, M.; Rubin, N. C.; Santagati, R.; Su, Y.; Huggins, W. J.; Goings, J. J.; Moll, N.; Kyoseva, E.; Degroote, M.; Tautermann, C. S.; Lee, J.; Berry, D. W.; Wiebe, N.; Babbush, R., Efficient Quantum Computation of Molecular Forces and Other Energy Gradients. Physical Review Research 2022, 4, 043210. http://dx.doi.org/10.1103/PhysRevResearch.4.043210 

Peng, B.; Kowalski, K., Mapping Renormalized Coupled Cluster Methods to Quantum Computers through a Compact Unitary Representation of Nonunitary Operators. Physical Review Research 2022, 4. http://dx.doi.org/10.1103/PhysRevResearch.4.043172 

Petrov, K.; Ganyecz, Á.; Benedek, Z.; Olasz, A.; Barcza, G.; Legeza, Ö. In QSCP-XXV Conference; Grabowski, I., Słowik, K., Maruani, J., Brändas, E. J., Eds.; Springer Link: Toruń, Poland, 2022; Vol. 34.

Petrik, N. G.; Baer, M. D.; Mundy, C. J.; Kimmel, G. A., Mixed Molecular and Dissociative Water Adsorption on Hydroxylated Tio2(110): An Infrared Spectroscopy and Ab Initio Molecular Dynamics Study. Journal of Physical Chemistry C 2022, 126, 21616-21627. http://dx.doi.org/10.1021/acs.jpcc.2c07063 

Pokhilko, P.; Yeh, C.-N.; Zgid, D., Iterative Subspace Algorithms for Finite-Temperature Solution of Dyson Equation. The Journal of Chemical Physics 2022, 156, 094101. http://dx.doi.org/10.1063/5.0082586 

Prabhakaran, V.; Romo, J.; Bhattarai, A.; George, K.; Norberg, Z. M.; Kalb, D.; Aprà, E.; Kottke, P. A.; Fedorov, A. G.; El-Khoury, P. Z.; Johnson, G. E.; Laskin, J., Integrated Photoelectrochemical Energy Storage Cells Prepared by Benchtop Ion Soft Landing. Chemical Communications 2022, 58, 9060-9063. http://dx.doi.org/10.1039/D2CC02595G 

Qadeer, S.; Santis, G. D.; Stinis, P.; Xantheas, S. S., Vibrational Levels of a Generalized Morse Potential. The Journal of Chemical Physics 2022, 157, 144104. http://dx.doi.org/10.1063/5.0103433 

Santis, G. D.; Takeda, N.; Hirata, K.; Tsuruta, K.; Ishiuchi, S.; Xantheas, S. S.; Fujii, M., Structure of Gas Phase Monohydrated Nicotine: Implications for Nicotine's Native Structure in the Acetylcholine Binding Protein. Journal of the American Chemical Society 2022, 144, 5. http://dx.doi.org/10.1021/jacs.2c04064 

Shee, A.; Yeh, C.-N.; Zgid, D., Exploring Coupled Cluster Green’s Function as a Method for Treating System and Environment in Green’s Function Embedding Methods. Journal of Chemical Theory and Computation 2022, 18, 664-676. http://dx.doi.org/10.1021/acs.jctc.1c00712 

Takeda, N.; Hirata, K.; Tsuruta, K.; Santis, G. D.; Xantheas, S. S.; Ishiuchi, S.; Fujii, M., Gas Phase Protonated Nicotine Is a Mixture of Pyridine- and Pyrrolidine-Protonated  Conformers: Implications for Its Native Structure in the Nicotinic Acetylcholine Receptor. Phys. Chem. Chem. Phys. 2022, 24, 5786-5793. http://dx.doi.org/10.1039/d1cp05175j 

Tzeli, D.; Xantheas, S. S., Breaking Covalent Bonds in the Context of the Many-Body Expansion (Mbe). I. The Purported "First Row Anomaly" in Xhn (X = C, Si, Ge, Sn; N=1-4). Journal of Chemical Physics 2022, 156, 14. http://dx.doi.org/10.1063/5.0095329 

Valiev, M.; Chuev, G. N.; Fedotova, M. V., Cdftpy: A Python Package for Performing Classical Density Functional Theory Calculations for Molecular Liquids. Comput. Phys. Commun. 2022, 276, 108338. http://dx.doi.org/10.1016/j.cpc.2022.108338 

Vila, F. D.; Rehr, J. J.; Pathak, H.; Peng, B.; Panyala, A.; Mutlu, E.; Bauman, N. P.; Kowalski, K., Real-Time Equation-of-Motion Cc Cumulant and Cc Green's Function Simulations of Photoemission Spectra of Water and Water Dimer. Journal of Chemical Physics 2022, 157, 10. http://dx.doi.org/10.1063/5.0099192 

Wright, J.; Gowrishankar, M.; Claudino, D.; Lotshaw, P. C.; Nguyen, T.; McCaskey, A. J.; Humble, T. S., Numerical Simulations of Noisy Quantum Circuits for Computational Chemistry. Materials Theory 2022, 6, 18. http://dx.doi.org/10.1186/s41313-022-00047-7 

2021

Barcza, G.; Ivády, V.; Szilvási, T.; Vörös, M.; Veis, L.; Gali, Á.; Legeza, Ö., Dmrg on Top of Plane-Wave Kohn–Sham Orbitals: A Case Study of Defected Boron Nitride. Journal of Chemical Theory and Computation 2021, 17, 1143-1154. http://dx.doi.org/10.1021/acs.jctc.0c00809 

Bassman, L.; Urbanek, M.; Metcalf, M.; Carter, J.; Kemper, A. F.; de Jong, W. A., Simulating Quantum Materials with Digital Quantum Computers. Quantum Science and Technology 2021, 6, 30. http://dx.doi.org/10.1088/2058-9565/ac1ca6 

Bauman, N. P.; Liu, H. B.; Bylaska, E. J.; Krishnamoorthy, S.; Low, G. H.; Granade, C. E.; Wiebe, N.; Baker, N. A.; Peng, B.; Roetteler, M.; Troyer, M.; Kowalski, K., Toward Quantum Computing for High-Energy Excited States in Molecular Systems: Quantum Phase Estimations of Core-Level States. Journal of Chemical Theory and Computation 2021, 17, 201-210. http://dx.doi.org/10.1021/acs.jctc.0c00909 

Beran, P.; Matoušek, M.; Hapka, M.; Pernal, K.; Veis, L., Density Matrix Renormalization Group with Dynamical Correlation Via Adiabatic Connection. Journal of Chemical Theory and Computation 2021, 17, 7575-7585. http://dx.doi.org/10.1021/acs.jctc.1c00896 

Brabec, J.; Brandejs, J.; Kowalski, K.; Xantheas, S.; Legeza, Ö.; Veis, L., Massively Parallel Quantum Chemical Density Matrix Renormalization Group Method. Journal of Computational Chemistry 2021, 42, 534-544. http://dx.doi.org/10.1002/jcc.26476 

Cao, W.; Xantheas, S. S.; Wang, X. B., Cryogenic Vibrationally Resolved Photoelectron Spectroscopy of OH–(H2O): Confirmation of Multidimensional Franck-Condon Simulation Results for the Transition State of the Oh + H2o Reaction. J Phys Chem A 2021, 125, 2154-2162. http://dx.doi.org/10.1021/acs.jpca.1c00848 

Carter-Fenk, K.; Mundy, C. J.; Herbert, J. M., Natural Charge-Transfer Analysis: Eliminating Spurious Charge-Transfer States in Time-Dependent Density Functional Theory Via Diabatization, with Application to Projection-Based Embedding. Journal of Chemical Theory and Computation 2021, 17, 4195-4210. http://dx.doi.org/10.1021/acs.jctc.1c00412 

Claudino, D.; Peng, B.; Bauman, N. P.; Kowalski, K.; Humble, T. S., Improving the Accuracy and Efficiency of Quantum Connected Moments Expansions. Quantum Science and Technology 2021, 6, 15. http://dx.doi.org/10.1088/2058-9565/ac0292 

Chuev, G. N.; Fedotova, M. V.; Valiev, M., Renormalized Site Density Functional Theory. J. Stat. Mech.-Theory Exp. 2021, 2021, 20. http://dx.doi.org/10.1088/1742-5468/abdeb3 

Chuev, G. N.; Fedotova, M. V.; Valiev, M., Renormalized Site Density Functional Theory for Models of Ion Hydration. Journal of Chemical Physics 2021, 155, 13. http://dx.doi.org/10.1063/5.0060249 

Duignan, T. T.; Kathmann, S. M.; Schenter, G. K.; Mundy, C. J., Toward a First-Principles Framework for Predicting Collective Properties of Electrolytes. Accounts of Chemical Research 2021, 54, 2833-2843. http://dx.doi.org/10.1021/acs.accounts.1c00107 

Doran, A. E.; Hirata, S., Stochastic Evaluation of Fourth-Order Many-Body Perturbation Energies. The Journal of Chemical Physics 2021, 154, 134114. http://dx.doi.org/10.1063/5.0047798 

Doran, A. E.; Qiu, D. L.; Hirata, S., Monte Carlo Mp2-F12 for Noncovalent Interactions: The C60 Dimer. The Journal of Physical Chemistry A 2021, 125, 7344-7351. http://dx.doi.org/10.1021/acs.jpca.1c05021 

Dhawan, D.; Metcalf, M.; Zgid, D., Dynamical Self-Energy Mapping (Dsem) for Creation of Sparse Hamiltonians Suitable for Quantum Computing. Journal of Chemical Theory and Computation 2021, 17, 7622-7631. http://dx.doi.org/10.1021/acs.jctc.1c00931 

Dunning, T. H., Jr.; Xu, L. T., Nature of the Bonding in the Bifluoride Anion, Fhf–. The Journal of Physical Chemistry Letters 2021, 12, 7293-7298. http://dx.doi.org/10.1021/acs.jpclett.1c02123 

Dunning, T. H., Jr.; Xu, L. T.; Cooper, D. L.; Karadakov, P. B., Spin-Coupled Generalized Valence Bond Theory: New Perspectives on the Electronic Structure of Molecules and Chemical Bonds. The Journal of Physical Chemistry A 2021, 125, 2021-2050. http://dx.doi.org/10.1021/acs.jpca.0c10472 

Dunning, T. H., Jr.; Xu, L. T.; Thompson, J. V. K., New Insights into the Remarkable Difference between Ch5– and Sih5–. The Journal of Physical Chemistry A 2021, 125, 7414-7424. http://dx.doi.org/10.1021/acs.jpca.1c05357 

Gebhard, F.; Legeza, Ö., Tracing the Mott-Hubbard Transition in One-Dimensional Hubbard Models without Umklapp Scattering. Physical Review B 2021, 104, 245118. http://dx.doi.org/10.1103/PhysRevB.104.245118 

Golub, P.; Antalik, A.; Veis, L.; Brabec, J., Machine Learning-Assisted Selection of Active Spaces for Strongly Correlated Transition Metal Systems. Journal of Chemical Theory and Computation 2021, 17, 6053-6072. http://dx.doi.org/10.1021/acs.jctc.1c00235 

Gibson, L. D.; Pfaendtner, J.; Mundy, C. J., Probing the Thermodynamics and Kinetics of Ethylene Carbonate Reduction at the Electrode-Electrolyte Interface with Molecular Simulations. Journal of Chemical Physics 2021, 155, 11. http://dx.doi.org/10.1063/5.0067687 

Heindel, J. P.; Xantheas, S. S., Molecular Dynamics Driven by the Many-Body Expansion (Mbe-Md). Journal of Chemical Theory and Computation 2021, 17, 7341-7352. http://dx.doi.org/10.1021/acs.jctc.1c00780 

Hirata, S., Finite-Temperature Many-Body Perturbation Theory for Electrons: Algebraic Recursive Definitions, Second-Quantized Derivation, Linked-Diagram Theorem, General-Order Algorithms, and Grand Canonical and Canonical Ensembles. The Journal of Chemical Physics 2021, 155. http://dx.doi.org/10.1063/5.0061384 

Hirata, S., Low-Temperature Breakdown of Many-Body Perturbation Theory for Thermodynamics. Physical Review A 2021, 103, 012223. http://dx.doi.org/10.1103/PhysRevA.103.012223 

Krumnow, C.; Veis, L.; Eisert, J.; Legeza, Ö., Effective Dimension Reduction with Mode Transformations: Simulating Two-Dimensional Fermionic Condensed Matter Systems with Matrix-Product States. Physical Review B 2021, 104, 075137. http://dx.doi.org/10.1103/PhysRevB.104.075137 

Kruppa, A. T.; Kovács, J.; Salamon, P.; Legeza, Ö., Entanglement and Correlation in Two-Nucleon Systems. Journal of Physics G: Nuclear and Particle Physics 2021, 48, 025107. http://dx.doi.org/10.1088/1361-6471/abc2dd 

Kathmann, S. M., Electric Fields and Potentials in Condensed Phases. Phys. Chem. Chem. Phys. 2021, 23, 23836-23849. http://dx.doi.org/10.1039/d1cp03571a 

Kowalski, K., Dimensionality Reduction of the Many-Body Problem Using Coupled-Cluster Subsystem Flow Equations: Classical and Quantum Computing Perspective. Physical Review A 2021, 104, 15. http://dx.doi.org/10.1103/PhysRevA.104.032804 

Kowalski, K.; Bair, R.; Bauman, N. P.; Boschen, J. S.; Bylaska, E. J.; Daily, J.; de Jong, W. A.; Dunning, T., Jr.; Govind, N.; Harrison, R. J.; Keceli, M.; Keipert, K.; Krishnamoorthy, S.; Kumar, S.; Mutlu, E.; Palmer, B.; Panyala, A.; Peng, B.; Richard, R. M.; Straatsma, T. P.; Sushko, P.; Valeev, E. F.; Valiev, M.; van Dam, H. J. J.; Waldrop, J. M.; Williams-Young, D. B.; Yang, C.; Zalewski, M.; Windus, T. L., From Nwchem to Nwchemex: Evolving with the Computational Chemistry Landscape. Chem Rev 2021, 121, 4962-4998. http://dx.doi.org/10.1021/acs.chemrev.0c00998 

Lee, J.; Berry, D. W.; Gidney, C.; Huggins, W. J.; McClean, J. R.; Wiebe, N.; Babbush, R., Even More Efficient Quantum Computations of Chemistry through Tensor Hypercontraction. PRX Quantum 2021, 2, 030305. http://dx.doi.org/10.1103/PRXQuantum.2.030305 

Liu, J.; Yang, J. R.; Zeng, X. C.; Xantheas, S. S.; Yagi, K.; He, X., Towards Complete Assignment of the Infrared Spectrum of the Protonated Water Cluster H+(H2o)21. Nature Communications 2021, 12, 10. http://dx.doi.org/10.1038/s41467-021-26284-x 

Máté, M.; Legeza, Ö.; Schilling, R.; Yousif, M.; Schilling, C., How Creating One Additional Well Can Generate Bose-Einstein Condensation. Communications Physics 2021, 4, 29. http://dx.doi.org/10.1038/s42005-021-00533-3 

Mejia-Rodriguez, D.; Kunitsa, A.; Apra, E.; Govind, N., Scalable Molecular Gw Calculations: Valence and Core Spectra. Journal of Chemical Theory and Computation 2021, 17, 7504-7517. http://dx.doi.org/10.1021/acs.jctc.1c00738 

Nakouzi, E.; Stack, A. G.; Kerisit, S.; Legg, B. A.; Mundy, C. J.; Schenter, G. K.; Chun, J.; De Yoreo, J. J., Moving Beyond the Solvent-Tip Approximation to Determine Site-Specific Variations of Interfacial Water Structure through 3d Force Microscopy. Journal of Physical Chemistry C 2021, 125, 1282-1291. http://dx.doi.org/10.1021/acs.jpcc.0c07901 

Nakouzi, E.; Yadav, S.; Legg, B. A.; Zhang, S.; Tao, J. H.; Mundy, C. J.; Schenter, G. K.; Chun, J.; De Yoreo, J. J., Visualizing Solution Structure at Solid-Liquid Interfaces Using Three-Dimensional Fast Force Mapping. J. Vis. Exp. 2021, 22. http://dx.doi.org/10.3791/62585 

Nowak, A.; Legeza, Ö.; Boguslawski, K., Orbital Entanglement and Correlation from Pccd-Tailored Coupled Cluster Wave Functions. The Journal of Chemical Physics 2021, 154, 084111. http://dx.doi.org/10.1063/5.0038205 

Nicholas, P. B.; Chladek, J.; Veis, L.; Pittner, J.; Karol, K., Variational Quantum Eigensolver for Approximate Diagonalization of Downfolded Hamiltonians Using Generalized Unitary Coupled Cluster Ansatz. Quantum Science and Technology2021, 6, 14. http://dx.doi.org/10.1088/2058-9565/abf602 

Peng, B.; Kowalski, K., Variational Quantum Solver Employing the Pds Energy Functional. Quantum2021, 5, 17. http://dx.doi.org/10.22331/q-2021-06-10-473 

Peng, B.; Bauman, N. P.; Gulania, S.; Kowalski, K. Chapter Two - Coupled Cluster Green's Function: Past, Present, and Future in Annual Reports in Computational Chemistry; Dixon, D. A., Ed.; Elsevier, 2021; Vol. 17; pp 23-53.

Pershin, A.; Barcza, G.; Legeza, Ö.; Gali, A., Highly Tunable Magneto-Optical Response from Magnesium-Vacancy Color Centers in Diamond. npj Quantum Information 2021, 7, 99. http://dx.doi.org/10.1038/s41534-021-00439-6 

Szalay, S.; Zimborás, Z.; Máté, M.; Barcza, G.; Schilling, C.; Legeza, Ö., Fermionic Systems for Quantum Information People. Journal of Physics A: Mathematical and Theoretical 2021, 54, 393001. http://dx.doi.org/10.1088/1751-8121/ac0646 

Tzeli, D.; Raugei, S.; Xantheas, S. S., Quantitative Account of the Bonding Properties of a Rubredoxin Model Complex [Fe(Sch3)4]Q, Q = −2, −1, +2, +3. Journal of Chemical Theory and Computation 2021, 17, 6080-6091. http://dx.doi.org/10.1021/acs.jctc.1c00485 

Yeh, C.-N.; Shee, A.; Iskakov, S.; Zgid, D., Testing the Green's Function Coupled Cluster Singles and Doubles Impurity Solver on Real Materials within the Framework of Self-Energy Embedding Theory. Physical Review B 2021, 103, 155158. http://dx.doi.org/10.1103/PhysRevB.103.155158 

Yuan, Q.; Cao, W.; Valiev, M.; Wang, X. B., Photoelectron Spectroscopy and Theoretical Study on Monosolvated Cyanate Analogue Clusters Ecx-· Sol (Ecx- = Ncse-, Ascse- and Ascs-; Sol = H2o, Ch3cn). J Phys Chem A 2021, 125, 3928-3935. http://dx.doi.org/10.1021/acs.jpca.1c03336 

Yuan, Q. Q.; Rohdenburg, M.; Cao, W. J.; Apra, E.; Landmann, J.; Finze, M.; Warneke, J.; Wang, X. B., Isolated [B2(Cn)6]2-: Small yet Exceptionally Stable Nonmetal Dianion. J. Phys. Chem. Lett. 2021, 12, 12005-12011. http://dx.doi.org/10.1021/acs.jpclett.1c03533 

2020

Apra, E.; Bylaska, E. J.; de Jong, W. A.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Valiev, M.; van Dam, H. J. J.; Alexeev, Y.; Anchell, J.; Anisimov, V.; Aquino, F. W.; Atta-Fynn, R.; Autschbach, J.; Bauman, N. P.; Becca, J. C.; Bernholdt, D. E.; Bhaskaran-Nair, K.; Bogatko, S.; Borowski, P.; Boschen, J.; Brabec, J.; Bruner, A.; Cauet, E.; Chen, Y.; Chuev, G. N.; Cramer, C. J.; Daily, J.; Deegan, M. J. O.; Dunning, T. H.; Dupuis, M.; Dyall, K. G.; Fann, G. I.; Fischer, S. A.; Fonari, A.; Fruchtl, H.; Gagliardi, L.; Garza, J.; Gawande, N.; Ghosh, S.; Glaesemann, K.; Gotz, A. W.; Hammond, J.; Helms, V.; Hermes, E. D.; Hirao, K.; Hirata, S.; Jacquelin, M.; Jensen, L.; Johnson, B. G.; Jonsson, H.; Kendall, R. A.; Klemm, M.; Kobayashi, R.; Konkov, V.; Krishnamoorthy, S.; Krishnan, M.; Lin, Z.; Lins, R. D.; Littlefield, R. J.; Logsdail, A. J.; Lopata, K.; Ma, W.; Marenich, A. V.; del Campo, J. M.; Mejia-Rodriguez, D.; Moore, J. E.; Mullin, J. M.; Nakajima, T.; Nascimento, D. R.; Nichols, J. A.; Nichols, P. J.; Nieplocha, J.; Otero-de-la-Roza, A.; Palmer, B.; Panyala, A.; Pirojsirikul, T.; Peng, B.; Peverati, R.; Pittner, J.; Pollack, L.; Richard, R. M.; Sadayappan, P.; Schatz, G. C.; Shelton, W. A.; Silverstein, D. W.; Smith, D. M. A.; Soares, T. A.; Song, D.; Swart, M.; Taylor, H. L.; Thomas, G. S.; Tipparaju, V.; Truhlar, D. G.; Tsemekhman, K.; Van Voorhis, T.; Vazquez-Mayagoitia, A.; Verma, P.; Villa, O.; Vishnu, A., Nwchem: Past, Present, and Future. Journal of Chemical Physics 2020, 152, 26. http://dx.doi.org/10.1063/5.0004997 

Bauman, N. P.; Peng, B.; Kowalski, K., Coupled Cluster Green’s Function Formulations Based on the Effective Hamiltonians. Molecular Physics 2020, 118. http://dx.doi.org/10.1080/00268976.2020.1725669 

Bilbrey, J. A.; Heindel, J. P.; Schram, M.; Bandyopadhyay, P.; Xantheas, S. S.; Choudhury, S., A Look inside the Black Box: Using Graph-Theoretical Descriptors to Interpret a Continuous-Filter Convolutional Neural Network (Cf-Cnn) Trained on the Global and Local Minimum Energy Structures of Neutral Water Clusters. Journal of Chemical Physics 2020, 153, 024302. http://dx.doi.org/10.1063/5.0009933 

Bylaska, E. J.; Waters, K.; Hermes, E. D.; Zádor, J.; Rosso, K. M., A Filon-Like Integration Strategy for Calculating Exact Exchange in Periodic Boundary Conditions: A Plane-Wave Dft Implementation. Materials Theory 2020, 4. http://dx.doi.org/10.1186/s41313-020-00019-9 

Chuev, G. N.; Fedotova, M. V.; Valiev, M., Chemical Bond Effects in Classical Site Density Functional Theory of Inhomogeneous Molecular Liquids. Journal of Chemical Physics 2020, 152, 7. http://dx.doi.org/10.1063/1.5139619 

Duignan, T. T.; Mundy, C. J.; Schenter, G. K.; Zhao, X. S., Method for Accurately Predicting Solvation Structure. Journal of Chemical Theory and Computation2020, 16, 5401-5409. http://dx.doi.org/10.1021/acs.jctc.0c00300 

Duignan, T. T.; Schenter, G. K.; Fulton, J. L.; Huthwelker, T.; Balasubramanian, M.; Galib, M.; Baer, M. D.; Wilhelm, J.; Hutter, J.; Del Ben, M.; Zhao, X. S.; Mundy, C. J., Quantifying the Hydration Structure of Sodium and Potassium Ions: Taking Additional Steps on Jacob's Ladder. Phys. Chem. Chem. Phys. 2020, 22, 10641-10652. http://dx.doi.org/10.1039/c9cp06161d 

Fetisov, E. O.; Mundy, C. J.; Schenter, G. K.; Benmore, C. J.; Fulton, J. L.; Kathmann, S. M., Nanometer-Scale Correlations in Aqueous Salt Solutions. J Phys Chem Lett2020, 11, 2598-2604. http://dx.doi.org/10.1021/acs.jpclett.0c00322 

Gibson, L. D.; Pfaendtner, J., Solvent Oligomerization Pathways Facilitated by Electrolyte Additives during Solid-Electrolyte Interphase Formation. Phys Chem Chem Phys2020, 22, 21494-21503. http://dx.doi.org/10.1039/d0cp03286g 

Heindel, J. P.; Xantheas, S. S., The Many-Body Expansion for Aqueous Systems Revisited: 1. Water-Water Interactions. J Chem Theory Comput 2020, 16, 6843-6855. http://dx.doi.org/10.1021/acs.jctc.9b00749 

Heindel, J. P.; Xantheas, S. S., The Many-Body Expansion for Aqueous Systems Revisited: I. Water-Water Interactions. Journal of Chemical Theory and Computation 2020, 16, 6843-6855. http://dx.doi.org/10.1021/acs.jctc.9b00749 

Kuhne, T. D.; Iannuzzi, M.; Del Ben, M.; Rybkin, V. V.; Seewald, P.; Stein, F.; Laino, T.; Khaliullin, R. Z.; Schutt, O.; Schiffmann, F.; Golze, D.; Wilhelm, J.; Chulkov, S.; Bani-Hashemian, M. H.; Weber, V.; Borstnik, U.; Taillefumier, M.; Jakobovits, A. S.; Lazzaro, A.; Pabst, H.; Muller, T.; Schade, R.; Guidon, M.; Andermatt, S.; Holmberg, N.; Schenter, G. K.; Hehn, A.; Bussy, A.; Belleflamme, F.; Tabacchi, G.; Gloss, A.; Lass, M.; Bethune, I.; Mundy, C. J.; Plessl, C.; Watkins, M.; VandeVondele, J.; Krack, M.; Hutter, J., Cp2k: An Electronic Structure and Molecular Dynamics Software Package - Quickstep: Efficient and Accurate Electronic Structure Calculations. Journal of Chemical Physics 2020, 152, 47. http://dx.doi.org/10.1063/5.0007045 

Kowalski, K.; Bauman, N. P., Sub-System Quantum Dynamics Using Coupled Cluster Downfolding Techniques. J Chem Phys 2020, 152, 244127. http://dx.doi.org/10.1063/5.0008436 

Kowalski, K.; Peng, B., Quantum Simulations Employing Connected Moments Expansions. Journal of Chemical Physics 2020, 153, 10. http://dx.doi.org/10.1063/5.0030688 

Legg, B. A.; Baer, M. D.; Chun, J.; Schenter, G. K.; Huang, S. F.; Zhang, Y. Z.; Min, Y. J.; Mundy, C. J.; De Yoreo, J. J., Visualization of Aluminum Ions at the Mica Water Interface Links Hydrolysis State-to-Surface Potential and Particle Adhesion. Journal of the American Chemical Society 2020, 142, 6093-6102. http://dx.doi.org/10.1021/jacs.9b12530 

Leitold, C.; Mundy, C. J.; Baer, M. D.; Schenter, G. K.; Peters, B., Solvent Reaction Coordinate for an Sn2 Reaction. Journal of Chemical Physics 2020, 153, 11. http://dx.doi.org/10.1063/5.0002766 

Liu, L. L.; Nakouzi, E.; Sushko, M. L.; Schenter, G. K.; Mundy, C. J.; Chun, J.; De Yoreo, J. J., Connecting Energetics to Dynamics in Particle Growth by Oriented Attachment Using Real-Time Observations. Nature Communications 2020, 11, 11. http://dx.doi.org/10.1038/s41467-020-14719-w 

Manookian, B.; Hernandez, E. D.; Baer, M. D.; Mundy, C. J.; Jentoft, F. C.; Auerbach, S. M., Experimental and Dft Calculated Ir Spectra of Guests in Zeolites: Acyclic Olefins and Host-Guest Interactions. Journal of Physical Chemistry C 2020, 124, 10561-10572. http://dx.doi.org/10.1021/acs.jpcc.0c01225 

Metcalf, M.; Bauman, N. P.; Kowalski, K.; de Jong, W. A., Resource-Efficient Chemistry on Quantum Computers with the Variational Quantum Eigensolver and the Double Unitary Coupled-Cluster Approach. Journal of Chemical Theory and Computation2020, 16, 6165-6175. http://dx.doi.org/10.1021/acs.jctc.0c00421 

Palmer, B. J.; Chun, J.; Morris, J. F.; Mundy, C. J.; Schenter, G. K., Correlation Function Approach for Diffusion in Confined Geometries. Phys. Rev. E 2020, 102, 022129. http://dx.doi.org/10.1103/PhysRevE.102.022129 

Qin, Z. B.; Hou, G. L.; Yang, Z.; Valiev, M.; Wang, X. B., Distonic Radical Anion Species in Cysteine Oxidation Processes. Phys. Chem. Chem. Phys. 2020, 22, 17554-17558. http://dx.doi.org/10.1039/d0cp02165b 

Roy, S.; Schenter, G. K.; Napoli, J. A.; Baer, M. D.; Markland, T. E.; Mundy, C. J., Resolving Heterogeneous Dynamics of Excess Protons in Aqueous Solution with Rate Theory. The Journal of Physical Chemistry B 2020, 124, 5665-5675. http://dx.doi.org/10.1021/acs.jpcb.0c02649 

Wasielewski, M. R.; Forbes, M. D. E.; Frank, N. L.; Kowalski, K.; Scholes, G. D.; Yuen-Zhou, J.; Baldo, M. A.; Freedman, D. E.; Goldsmith, R. H.; Goodson, T., 3rd; Kirk, M. L.; McCusker, J. K.; Ogilvie, J. P.; Shultz, D. A.; Stoll, S.; Whaley, K. B., Exploiting Chemistry and Molecular Systems for Quantum Information Science. Nat Rev Chem 2020, 4, 490-504. http://dx.doi.org/10.1038/s41570-020-0200-5 

Xu, L. T.; Cooper, D. L.; Dunning, T. H., Resolving a Puzzling Anomaly in the Spin-Coupled Generalized Valence Bond Description of Benzene. Journal of Computational Chemistry 2020, 41, 1421-1426. http://dx.doi.org/10.1002/jcc.26185

Yang, N.; Edington, S. C.; Choi, T. H.; Henderson, E. V.; Heindel, J. P.; Xantheas, S. S.; Jordan, K. D.; Johnson, M. A., Mapping the Temperature-Dependent and Network Site-Specific Onset of Spectral Diffusion at the Surface of a Water Cluster Cage. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 26047-26052. http://dx.doi.org/10.1073/pnas.2017150117 

Yang, N.; Khuu, T.; Mitra, S.; Duong, C. H.; Johnson, M. A.; DiRisio, R. J.; McCoy, A. B.; Miliordos, E.; Xantheas, S. S., Isolating the Contributions of Specific Network Sites to the Diffuse Vibrational Spectrum of Interfacial Water with Isotopomer-Selective Spectroscopy of Cold Clusters. Journal of Physical Chemistry A 2020, 124, 10393-10406. http://dx.doi.org/10.1021/acs.jpca.0c07795 

Yesibolati, M. N.; Lagana, S.; Sun, H. Y.; Beleggia, M.; Kathmann, S. M.; Kasama, T.; Molhave, K., Mean Inner Potential of Liquid Water. Phys. Rev. Lett. 2020, 124, 5. http://dx.doi.org/10.1103/PhysRevLett.124.065502 

Zhang, H.; Cao, W.; Yuan, Q.; Zhou, X.; Valiev, M.; Kass, S. R.; Wang, X. B., Cryogenic “Iodide-Tagging” Photoelectron Spectroscopy: A Sensitive Probe for Specific Binding Sites of Amino Acids. J Phys Chem Lett 2020, 11, 4346-4352. http://dx.doi.org/10.1021/acs.jpclett.0c01099 

2019

Bauman, N. P.; Low, G. H.; Kowalski, K., Quantum Simulations of Excited States with Active-Space Downfolded Hamiltonians. J Chem Phys 2019, 151, 234114. http://dx.doi.org/10.1063/1.5128103 

Boyer, M. A.; Marsalek, O.; Heindel, J. P.; Markland, T. E.; McCoy, A. B.; Xantheas, S. S., Beyond Badger's Rule: The Origins and Generality of the Structure-Spectra Relationship of Aqueous Hydrogen Bonds. J. Phys. Chem. Lett. 2019, 10, 918-924. http://dx.doi.org/10.1021/acs.jpclett.8b03790 

Denton, J. K.; Kelleher, P. J.; Johnson, M. A.; Baer, M. D.; Kathmann, S. M.; Mundy, C. J.; Rudd, B. A. W.; Allen, H. C.; Choi, T. H.; Jordan, K. D., Molecular-Level Origin of the Carboxylate Head Group Response to Divalent Metal Ion Complexation at the Air-Water Interface. Proc. Natl. Acad. Sci. U. S. A.2019, 116, 14874-14880. http://dx.doi.org/10.1073/pnas.1818600116 

Fetisov, E. O.; Isley, W. C.; Lumetta, G. J.; Kathmann, S. M., Electric Potentials of Metastable Salt Clusters. Journal of Physical Chemistry C 2019, 123, 14010-14023. http://dx.doi.org/10.1021/acs.jpcc.9b02494 

Hou, G. L.; Valiev, M.; Wang, X. B., Sulfuric Acid and Aromatic Carboxylate Clusters H2SO4•ArCOO-: Structures, Properties, and Their Relevance to the Initial Aerosol Nucleation. International Journal of Mass Spectrometry 2019, 439, 27-33. http://dx.doi.org/10.1016/j.ijms.2019.02.001 

Ishiuchi, S.; Wako, H.; Xantheas, S. S.; Fujii, M., Probing the Selectivity of Li+ and Na+ Cations on Noradrenaline at the Molecular Level. Faraday Discussions 2019, 217, 396-413. http://dx.doi.org/10.1039/c8fd00186c

Kolesnikov, A. I.; Anovitz, L. M.; Hawthorne, F. C.; Podlesnyak, A.; Schenter, G. K., Effect of Fine-Tuning Pore Structures on the Dynamics of Confined Water. Journal of Chemical Physics 2019, 150, 204706. http://dx.doi.org/10.1063/1.5096771 

Rakshit, A.; Bandyopadhyay, P.; Heindel, J. P.; Xantheas, S. S., Atlas of Putative Minima and Low-Lying Energy Networks of Water Clusters N=3-25. Journal of Chemical Physics 2019, 151, 11. DOI: 10.1063/1.5128378 

Warneke, J.; Konieczka, S. Z.; Hou, G. L.; Aprà, E.; Kerpen, C.; Keppner, F.; Schäfer, T. C.; Deckert, M.; Yang, Z.; Bylaska, E. J.; Johnson, G. E.; Laskin, J.; Xantheas, S. S.; Wang, X. B.; Finze, M., Properties of Perhalogenated {Closo-B10} and {Closo-B11} Multiply Charged Anions and a Critical Comparison with {Closo-B12} in the Gas and the Condensed Phase. Phys. Chem. Chem. Phys. 2019, 21, 5903-5915. http://dx.doi.org/10.1039/c8cp05313h

Zdrali, E.; Baer, M. D.; Okur, H. I.; Mundy, C. J.; Roke, S., The Diverse Nature of Ion Speciation at the Nanoscale Hydrophobic/Water Interface. Journal of Physical Chemistry B 2019, 123, 2414-2423. http://dx.doi.org/10.1021/acs.jpcb.8b10207 

Zhuang, D. B.; Riera, M.; Schenter, G. K.; Fulton, J. L.; Paesani, F., Many-Body Effects Determine the Local Hydration Structure of Cs+ in Solution. J. Phys. Chem. Lett. 2019, 10, 406-412. http://dx.doi.org/10.1021/acs.jpclett.8b03829 

PNNL

  • Get in Touch
    • Contact
    • Careers
    • Doing Business
    • Environmental Reports
    • Security & Privacy
    • Vulnerability Disclosure Policy
  • Research
    • Scientific Discovery
    • Energy Resiliency
    • National Security
Subscribe to PNNL News
Department of Energy Logo Battelle Logo
Pacific Northwest National Laboratory (PNNL) is managed and operated by Battelle for the Department of Energy
  • YouTube
  • Facebook
  • X (formerly Twitter)
  • Instagram
  • LinkedIn