Wei Wang
Wei Wang
Biography
Dr. Wei Wang is a recognized expert in the field of grid energy storage for his innovative work on the redox flow battery technologies. He is currently the director of the Energy Storage Materials Initiative, a multi-million-dollar and multi-year project at Pacific Northwest National Laboratory (PNNL) to fundamentally transform energy material R&D through a physics-informed data-driven approach. He also serves as the chief scientist and technical lead on grid energy storage R&D at PNNL. Dr. Wang joined PNNL in 2009 after receiving a PhD in Materials Science and Engineering from Carnegie Mellon University.
Dr. Wang was in the top 1% of Highly Cited Researchers in energy storage in 2018. He is also the recipient of multiple highly regarded awards, including the U.S. Environmental Protection Agency Green Chemistry Challenge Award, Federal Laboratory Consortium Excellence in Technology Transfer Award, R&D 100 Award, American Chemical Society Division of Energy & Fuels Emerging Researcher Award, and the Electrochemical Society Pacific Northwest Section Electrochemistry Research Award. His research has been published in high-impact journals, such as Science, Nature Energy, and Joule, etc. He has received more than 20 patents with multiple patent applications. The technologies developed by his team have been licensed to multiple companies.
Dr. Wang is the co-founder of the International Coalition for Energy Storage and Innovation. He is also an active conference/symposium organizer in energy storage for several professional organizations including the Materials Research Society, the Electrochemical Society, and others.
Disciplines and Skills
- Material science and electrochemistry
- Materials development and system integration of various energy storage systems
- Data-driven energy materials research
- Innovative energy storage technologies
Education
- PhD in Materials Science and Engineering, Carnegie Mellon University
- MS in Materials Science and Engineering, Clemson University
- BA in Ceramic Engineering, East China University of Science and Technology
Affiliations and Professional Service
- Committee Member and Conference Organizer, Materials Research Society
- Committee Member and Conference Organizer, The Electrochemical Society
- Conference Organizer, ICESE
- Conference Organizer, NAATBatt
- Proposal Reviewer, DOE programs
- Proposal Reviewer, National Science Foundation programs
- Journal Reviewer, Nature, Science, Nature Energy, Nature Communications, Joule, Chem, Journal of the American Chemical Society, Nano Letters, Advanced Materials, Advanced Energy Materials, Energy & Environmental Science, and others
Awards and Recognitions
- 1% Highly Cited Researcher, Clarivate (2018)
- Challenge Award, EPA Green Chemistry (2017)
- Awardee, DOE ARPA-E’s OPEN program (2015)
- Publication of The Year Award, PNNL (2015)
- Far West Region Outstanding Technology Development, FLC (2014)
- Award for Excellence in Technology Transfer, FLC (2013)
- Ronald L. Brodzinski Award for Early Career Exceptional Achievement (2012)
- R&D 100 Award (2012)
- Exceptional Contribution Award, PNNL (2012)
- Key Contributor Award, PNNL (2012-2019)
Patents
- Nie Z, W Wang, X Wei, B Li, J Liu, and V Sprenkle. June 2, 2020. "All-vanadium sulfate acid redox flow battery system." U.S. Patent No. 10,673,090,
- Wei X, W Wang, A Hollas, V Sprenkle, Z Nie, and B Li. October 22, 2019. "HIGHLY STABLE PHENAZINE DERIVATIVES FOR AQUEOUS REDOX FLOW BATTERIES. " U.S. Patent No. 10,454,124.
- Thomsen E, D Reed, B Koeppel, K Recknagle, V Viswanathan, A Crawford, Z Nie, W Wang, V Sprenkle, and B Lin. August 13, 2019. "HIGH PERFORMANCE REDOX FLOW BATTERY STACK ." U.S. Patent No. 10,381,667.
- Wang W, L Li, Z Yang, and Z Nie. May 1, 2018. "Redox Flow Batteries Having Multiple Electroactive Elements." U.S. Patent No. 9,960,443.
- Li L, S Kim, Z Yang, W Wang, Z Nie, B Chen, J Zhang, and G Xia. November 14, 2017. "REDOX FLOW BATTERIES BASED ON SUPPORTING SOLUTIONS CONTAINING CHLORIDE." U.S. Patent No. 9,819,039.
- Liu T, B Li, X Wei, Z Nie, W Wang, J Liu, V Sprenkle. October 17, 2017. "AQUEOUS ELECTROLYTES FOR REDOX FLOW BATTERY SYSTEMS." U.S. Patent No. 9,793,566.
- Li B, Z Nie, W Wang, J Liu, V Sprenkle. August 29, 2017. "High-Energy-Density, Aqueous, Metal-Polyiodide Redox Flow Batteries." U.S. Patent No. 9,748,595.
- Xiao, J, J Zhang, G Graff, J Liu, W Wang, J Zheng, W Xu, Y Shao, and Z Yang. August 2, 2016. "Energy Storage Systems Having an Electrode Comprising LixSy." U.S. Patent No. 9,406,960.
- Li B, X Wei, Q Luo, Z Nie, W Wang, V Sprenkle. January 12, 2016,."Composite Separators and Redox Flow Batteries Based on Porous Separators." U.S. Patent No. 9,236,620.
- Wang W, J Xiao, X Wei, J Liu, V Sprenkle. December 15, 2015. "Hybrid Anode for Redox Flow Batteries." U.S. Patent No. 9,214,695.
- Wang W, W Xu, L Li, and Z Yang. September 8, 2015. "Hybrid Energy Storage System Utilizing Redox Active Organic Compounds." U.S. Patent No. 9,130,218.
- Li L, S Kim, Z Yang, W Wang, Z Nie, B Chen, J Zhang, and G Xia. September 1, 2015. "Redox Flow Batteries Based on Supporting Solutions Containing Chloride." U.S. Patent No. 9,123,931.
- Li L, S Kim, Z Yang, W Wang, Z Nie, B Chen, J Zhang, and G Xia. July 7, 2015. " REDOX FLOW BATTERIES BASED ON SUPPORTING SOLUTIONS CONTAINING CHLORIDE." U.S. Patent No. 9,077,011.
- Liu J, Y Cao, L Xiao, Z Yang, W Wang, D Choi, and Z Nie. May 5, 2015. "Nanomaterials for Sodium-Ion Batteries." U.S. Patent No. 9,023,529.
- Li L, S Kim, Z Yang, W Wang, J Zhang, B Chen, Z Nie, and G Xia. July 8, 2014. "Fe-V Redox Flow Batteries." U.S. Patent No. 8,771,856.
- Li L, S Kim, Z Yang, W Wang, J Zhang, B Chen, Z Nie, and G Xia. January 14, 2014. "REDOX FLOW BATTERIES BASED ON SUPPORTING SOLUTIONS CONTAINING CHLORIDE." U.S. Patent No. 8,628,880.
Publications
2023
- Chen Y., J. Bao, Z. Xu, P. Gao, L. Yan, S. Kim, and W. Wang. 2023. "A hybrid analytical and numerical model for cross-over and performance decay in a unit cell vanadium redox flow battery." Journal of Power Sources 578. PNNL-SA-181017. doi:10.1016/j.jpowsour.2023.233210
- Feng R., Y. Chen, X. Zhang, B. Rousseau, P. Gao, P. Chen, and S.T. Mergelsberg, et al. 2023. "Proton regulated alcohol oxidation for high-capacity ketone-based flow battery anolyte." Joule. PNNL-SA-174628. doi:10.1016/j.joule.2023.06.013
- Fu Y., J. Bao, C. Zeng, Y. Chen, Z. Xu, S. Kim, and W. Wang. 2023. "A Three-Dimensional Pore-scale Model for Redox Flow Battery Electrode Design Analysis." Journal of Power Sources 556. PNNL-SA-175492. doi:10.1016/j.jpowsour.2022.232329
- Kim S., L. Yan, and W. Wang. 2023. "Asymmetric vanadium-based aqueous flow batteries." In Redox Flow Batteries, edited by Christina Roth, Jens Noack, Maria Skyllas-Kazacos. 689-708. PNNL-SA-181361. doi:10.1002/9783527832767.ch31
- Lim H., W. Kwak, D. Nguyen, W. Wang, W. Xu, and J. Zhang. 2023. "Three-Dimensionally Semi-Ordered Macroporous Air Electrodes for Metal-Oxygen Batteries." Journal of Materials Chemistry A 11, no. 11:5746-5753. PNNL-SA-180310. doi:10.1039/D2TA09442H
- Liu J., Z. Zhang, X. Li, M. Zong, Y. Wang, S. Wang, and P. Chen, et al. 2023. "Machine learning assisted phase and size-controlled synthesis of iron oxide particles." Chemical Engineering Journal. PNNL-SA-183174. doi:10.1016/j.cej.2023.145216.
- Wan Z., S. Li, P. Chen, F.C. Yeung, Z. Nie, Y. Liang, and Y. Wang, et al. 2023. "Unravel crystallization kinetics of V(V) electrolytes for all-vanadium redox flow battery by in situ Raman spectroscopy." Advanced Composites and Hybrid Materials 6, no. 3:Art. No. 119. PNNL-SA-178383. doi:10.1007/s42114-023-00635-2
- Yan L., X. Zang, Z. Nie, L. Zhong, Z. Deng, and W. Wang. 2023. "Online and Noninvasive Monitoring of Battery Health at Negative-half Cell in All-Vanadium Redox Flow Batteries Using Ultrasound." Journal of Power Sources 580. PNNL-SA-174447. doi:10.1016/j.jpowsour.2023.233417
- Zeng C., S. Kim, Y. Chen, Y. Fu, J. Bao, Z. Xu, and W. Wang. 2023. "In-situ characterization of kinetics, mass transfer, and active electrode surface area for vanadium redox flow batteries." Journal of Electrochemical Society 170, no. 3:030507. PNNL-SA-173834. doi:10.1149/1945-7111/acbf7f
2022
- Gao P., A. Andersen, J.P. Sepulveda, G.U. Panapitiya, A.M. Hollas, E.G. Saldanha, and V. Murugesan, et al. 2022. "SOMAS: a platform for data-driven material discovery in redox flow battery development." Scientific Data 9. PNNL-SA-161978. doi:10.1038/s41597-022-01814-4
- Hou S., L. Chen, X. Fan, X. Fan, X. Ji, B. Wang, and C. Cui, et al. 2022. "High-Energy and Low-Cost Membrane-free Chlorine Flow Battery." Nature Communications 13. PNNL-SA-158978. doi:10.1038/s41467-022-28880-x
- Howard A.A., T. Yu, W. Wang, and A.M. Tartakovsky. 2022. "Physics-informed CoKriging model of a redox flow battery." Journal of Power Sources 542. PNNL-SA-162807. doi:10.1016/j.jpowsour.2022.231668
- Feng S., R.K. Singh, Z. Li, Y. Wang, Y. Fu, J. Bao, and Z. Xu, et al. 2022. "Low-Tortuous and Dense Single-Particle-Layer Electrode for High-Energy Lithium-Sulfur Batteries." Energy & Environmental Science 15, no. 9:3842-3853. PNNL-SA-161239. doi:10.1039/D2EE01442D
- Lim H., S. Chae, L. Yan, G. Li, R. Feng, Y. Shin, and Z. Nie, et al. 2022. "Crosslinked Polyethyleneimine Gel Polymer Interface to Improve Cycling Stability of RFBs." Energy Material Advances 2022. PNNL-SA-160359. doi:10.34133/2022/9863679
- Panapitiya G.U., M.K. Girard, A.M. Hollas, J.P. Sepulveda, V. Murugesan, W. Wang, and E.G. Saldanha. 2022. "Evaluation of Deep Learning Architectures for Aqueous Solubility Prediction." ACS Omega 7, no. 18:15695–15710. PNNL-SA-161618. doi:10.1021/acsomega.2c00642
- Shin S., H. Lim, K. Han, A.J. Robinson, A.M. Hollas, B. Modachur Sivakumar, and S. Johnson, et al. 2022. "Porous Liquids as Electrolyte: A Case Study of Li+ and Mg2+ Ion Transport in Crown Ether-Based Type-II Porous Liquids." ACS Materials Letters 5. PNNL-SA-177218. doi:10.1021/acsmaterialslett.2c00956
- Yan L., J. Bao, Y. Shao, and W. Wang. 2022. "An electrochemical hydrogen-looping system for low-cost CO2 capture from seawater." ACS Energy Letters 7, no. 6:1947-1952. PNNL-SA-168725. doi:10.1021/acsenergylett.2c00396
- Yan L., Y. Shao, and W. Wang. 2022. "A hydrogen iron flow battery with high current density and long cyclability enabled through circular water management." Energy and Environmental Materials. PNNL-SA-182156. doi:10.1002/eem2.12478
- Xie X., L. Du, L. Yan, S. Park, Y. Qiu, J.J. Sokolowski, and W. Wang, et al. 2022. "Oxygen Evolution Reaction in Alkaline Environment: Material Challenges and Solutions." Advanced Functional Materials 32, no. 21:2110036. PNNL-SA-166448. doi:10.1002/adfm.202110036
- Zeng C., S. Kim, Y. Chen, Y. Fu, J. Bao, Z. Xu, and W. Wang. 2022. "Characterization of electrochemical behavior for aqueous organic redox flow batteries." Journal of Electrochemical Society 169, no. 12:Art. No. 120527. PNNL-SA-178207. doi:10.1149/1945-7111/acadad
- Zhang L., R. Feng, W. Wang, and G. Yu. 2022. "Emerging Chemistries and Molecular Designs for Flow Batteries." Nature Reviews Chemistry 6. PNNL-SA-168763. doi:10.1038/s41570-022-00394-6
- Zhou J., P. Chen, W. Wang, and X. Zhang. 2022. "Li7P3S11 electrolyte for all-solid-state lithium-ion batteries: structure, synthesis, and applications." Chemical Engineering Journal 446, no. Part 1:Art. No. 137041. PNNL-SA-168712. doi:10.1016/j.cej.2022.137041
- Zhou J., Y. Chen, Z. Yu, M.E. Bowden, Q. Miller, P. Chen, and H.T. Schaef, et al. 2022. "Wet-chemical synthesis of Li7P3S11 with tailored particle size for solid state electrolytes." Chemical Engineering Journal 429. PNNL-SA-162752. doi:10.1016/j.cej.2021.132334
2021
- Chen Y., J. Bao, Z. Xu, P. Gao, L. Yan, S. Kim, and W. Wang. 2021. "A two-dimensional analytical unit cell model for redox flow battery evaluation and optimization." Journal of Power Sources 506. PNNL-SA-159241. doi:10.1016/j.jpowsour.2021.230192
- Chen Y., Z. Xu, C. Wang, J. Bao, B.J. Koeppel, L. Yan, and P. Gao, et al. 2021. "Analytical modeling for redox flow battery design." Journal of Power Sources 482. PNNL-SA-150736. doi:10.1016/j.jpowsour.2020.228817
- Feng R., X. Zhang, V. Murugesan, A.M. Hollas, Y. Chen, Y. Shao, and E.D. Walter, et al. 2021. "Reversible Ketone Hydrogenation and Dehydrogenation for Aqueous Organic Redox Flow Batteries." Science 372, no. 6544:836-840. PNNL-SA-154606. doi:10.1126/science.abd9795
- Gao P., X. Yang, Y. Tang, M. Zheng, A. Andersen, V. Murugesan, and A.M. Hollas, et al. 2021. "Graphical Gaussian Process Regression Model for Aqueous Solvation Free Energy Prediction of Organic Molecules in Redox Flow Battery." Physical Chemistry Chemical Physics 23, no. 43:24892-24904. PNNL-SA-161057. doi:10.1039/D1CP04475C
- Li X., P. Gao, Y. Lai, J.D. Bazak, A.M. Hollas, H. Lin, and V. Murugesan, et al. 2021. "Symmetry-Breaking Design of an Organic Iron Complex Catholyte for a Long Cyclability Aqueous Organic Redox Flow Battery." Nature Energy 6, no. 9:873-881. PNNL-SA-157300. doi:10.1038/s41560-021-00879-6
- Murugesan V., Z. Nie, X. Zhang, P. Gao, Z. Zhu, Q. Huang, and L. Yan, et al. 2021. "Accelerated design of vanadium redox flow battery electrolytes through tunable solvation chemistry." Cell Reports Physical Science 2, no. 2:Article No. 100323. PNNL-SA-161062. doi:10.1016/j.xcrp.2021.100323
- Nambukara Wellala N.P., A.M. Hollas, K. Duanmu, V. Murugesan, X. Zhang, R. Feng, and Y. Shao, et al. 2021. "Decomposition pathways and mitigation strategies for highly-stable hydroxyphenazine flow battery anolytes." Journal of Materials Chemistry A 9, no. 38:21918-21928. PNNL-SA-161713. doi:10.1039/D1TA03655F
- Wang W. 2021. "A Membrane with Repelling Power." Nature Energy 6, no. 5:452-453. PNNL-SA-160127. doi:10.1038/s41560-021-00811-y
2020
- Bao J., V. Murugesan, C.J. Kamp, Y. Shao, L. Yan, and W. Wang. 2020. "Machine learning coupled multi-scale modeling for redox flow batteries." Advanced Theory and Simulations 3, no. 2:Article No. 1900167. PNNL-SA-148857. doi:10.1002/adts.201900167
- Zhang L., Y. Qian, R. Feng, Y. Ding, X. Zu, C. Zhang, and X. Guo, et al. 2020. "Reversible redox chemistry in azobenzene-based organic molecules for high-capacity and long-life nonaqueous redox flow batteries." Nature Communications 11, no. 1:Article No. 3843. PNNL-SA-152812. doi:10.1038/s41467-020-17662-y
2019
- Zang X., L. Yan, Y. Yang, H. Pan, Z. Nie, K. Jung, and Z. Deng, et al. 2019. "Monitoring the state-of-charge of a vanadium redox flow battery with the acoustic attenuation coefficient: an in operando noninvasive method." Small Methods 3, no. 12:1900494. PNNL-SA-141602. doi:10.1002/smtd.201900494
2018
- Duan W., B. Li, D. Lu, X. Wei, Z. Nie, V. Murugesan, and J.P. Kizewski, et al. 2018. "Towards an All-Vanadium Redox Flow Battery with Higher Theoretical Volumetric Capacities by Utilizing the VO2+/V3+ Couple." Journal of Energy Chemistry 27, no. 5:1381-1385. PNNL-SA-127931. doi:10.1016/j.jechem.2018.05.020
- Hollas A.M., X. Wei, V. Murugesan, Z. Nie, B. Li, D.M. Reed, and J. Liu, et al. 2018. "A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries." Nature Energy 3, no. 6:508-514. PNNL-SA-130788. doi:10.1038/s41560-018-0167-3
- Xie C., H. Zhang, W. Xu, W. Wang, and X. Li. 2018. "A Long Cycle Life, Self-Healing Zinc-Iodine Flow Battery with High Power Density." Angewandte Chemie International Edition 57, no. 35:11171-11176. PNNL-SA-131307. doi:10.1002/anie.201803122
- Xu P., C. Xie, C. Wang, Q. Lai, W. Wang, H. Zhang, and X. Li. 2018. "A membrane-free Interfacial Battery with High Energy Density." Chemical Communications 54, no. 82:11626-11629. PNNL-SA-129368. doi:10.1039/c8cc06048g
2017
- Duan W., J. Huang, J.A. Kowalski, I.A. Shkrob, V. Murugesan, E.D. Walter, and B. Pan, et al. 2017. ""Wine-Dark Sea" in An Organic Flow Battery: Storing Negative Charge in 2,1,3-Benzothiadiazole Radicals Leads to Improved Cyclability." ACS Energy Letters 2, no. 5:1156-1161. PNNL-SA-120607. doi:10.1021/acsenergylett.7b00261
- Wei X., W. Pan, W. Duan, A.M. Hollas, Z. Yang, B. Li, and Z. Nie, et al. 2017. "Materials and Systems for Organic Flow Batteries: Status and Challenges." ACS Energy Letters 2, no. 9:2187-2204. PNNL-SA-128015. doi:10.1021/acsenergylett.7b00650
- Zhang J., Z. Yang, I.A. Shkrob, R.S. Assary, S. Tung, B. Silcox, and W. Duan, et al. 2017. "Annulated dialkoxybenzenes as catholyte materials for nonaqueous redox flow batteries: achieving high chemical stability through bicyclic substitution." Advanced Energy Materials 7, no. 21:1701272. PNNL-SA-125834. doi:10.1002/aenm.201701272
2016
- Cheng Y., L. Luo, L. Zhong, J. Chen, B. Li, W. Wang, and S.X. Mao, et al. 2016. "Highly Reversible Zinc-ion Intercalation with Chevrel Phase Mo6S8 Nanocubes and Applications for Advanced Zinc-ion Batteries." ACS Applied Materials & Interfaces 8, no. 22:13673-13677. PNNL-SA-116513. doi:10.1021/acsami.6b03197
- Deng X., M.Y. Hu, X. Wei, W. Wang, K.T. Mueller, Z. Chen, and J.Z. Hu. 2016. "Nuclear Magnetic Resonance Studies of the Solvation Structures of a High-Performance Nonaqueous Redox Flow Electrolyte." Journal of Power Sources 308. PNNL-SA-113232. doi:10.1016/j.jpowsour.2015.12.005
- Duan W., V.S. Vemuri, J.D. Milshtein, S. Laramie, R.D. Dmello, J. Huang, and L. Zhang, et al. 2016. "A Symmetric Organic - Based Nonaqueous Redox Flow Battery and Its State of Charge Diagnostics by FTIR." Journal of Materials Chemistry A 4, no. 15:5448-5456. PNNL-SA-115896. doi:10.1039/c6ta01177b
- Estevez L., D.M. Reed, Z. Nie, A.M. Schwarz, M.I. Nandasiri, J.P. Kizewski, and W. Wang, et al. 2016. "Tunable oxygen functional groups as electro-catalysts on graphite felt surfaces for all vanadium flow batteries." ChemSusChem 9, no. 12:1455-1461. PNNL-SA-113820. doi:10.1002/cssc.201600198
- Han K., N. Rajput, M. Vijayakumar, X. Wei, W. Wang, J.Z. Hu, and K.A. Persson, et al. 2016. "Preferential Solvation of an Asymmetric Redox Molecule." Journal of Physical Chemistry C 120, no. 49:27834-27839. PNNL-SA-113547. doi:10.1021/acs.jpcc.6b09114
- Huang J., B. Pan, W. Duan, X. Wei, R.S. Assary, L. Su, and F. Brushett, et al. 2016. "The lightest organic radical cation for charge storage in redox flow batteries." Scientific Reports 6. PNNL-SA-114980. doi:10.1038/srep32102
- Li B., J. Liu, Z. Nie, W. Wang, D.M. Reed, J. Liu, and B.P. McGrail, et al. 2016. "Metal-organic frameworks as highly active electrocatalysts for high-energy density, aqueous zinc-polyiodide redox flow batteries." Nano Letters 16, no. 7:4335-4340. PNNL-SA-116994. doi:10.1021/acs.nanolett.6b01426
- Liu T.L., X. Wei, Z. Nie, V.L. Sprenkle, and W. Wang. 2016. "A Total Organic Aqueous Redox Flow Battery Employing Low Cost and Sustainable Methyl Viologen Anolyte and 4-HO-TEMPO Catholyte." Advanced Energy Materials 6, no. 3:Article No. 1501449. PNNL-SA-110796. doi:10.1002/aenm.201501449
- Park M., J. Ryu, W. Wang, and J. Cho. 2016. "Material design and engineering of next-generation flow-battery technologies." Nature Reviews: Materials 2. PNNL-SA-119674. doi:10.1038/natrevmats.2016.80
- Reed D.M., E.C. Thomsen, B. Li, W. Wang, Z. Nie, B.J. Koeppel, and J.P. Kizewski, et al. 2016. "Stack Developments in a kW class all vanadium mixed acid redox flow battery at the Pacific Northwest National Laboratory." Journal of the Electrochemical Society 163, no. 1:A5211-A5219. PNNL-SA-112057. doi:10.1149/2.0281601jes
- Reed D.M., E.C. Thomsen, B. Li, W. Wang, Z. Nie, B.J. Koeppel, and V.L. Sprenkle. 2016. "Performance of a Low Cost Interdigitated Flow Design on a 1 kW Class All Vanadium Mixed Acid Redox Flow Battery." Journal of Power Sources 306. PNNL-SA-112126. doi:10.1016/j.jpowsour.2015.11.089
- Vijayakumar M., Q. Luo, R.B. Lloyd, Z. Nie, X. Wei, B. Li, and V.L. Sprenkle, et al. 2016. "Tuning the perfluorosulfonic acid membrane morphology for vanadium redox flow batteries." ACS Applied Materials & Interfaces 8, no. 50:34327-34334. PNNL-SA-115747. doi:10.1021/acsami.6b10744
- Wang W., and V.L. Sprenkle. 2016. "Energy storage: Redox Flow Batteries Go Organic." Nature Chemistry 8, no. 3:204-206. PNNL-SA-115256. doi:10.1038/nchem.2466
- Wei X., W. Duan, J. Huang, L. Zhang, B. Li, D.M. Reed, and W. Xu, et al. 2016. "A High-Current, Stable Nonaqueous Organic Redox Flow Battery." ACS Energy Letters 1, no. 4:705-711. PNNL-SA-112127. doi:10.1021/acsenergylett.6b00255
- Xiao L., Y. Cao, W.A. Henderson, M.L. Sushko, Y. Shao, J. Xiao, and W. Wang, et al. 2016. "Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries." Nano Energy 19. PNNL-SA-115004. doi:10.1016/j.nanoen.2015.10.034
2015
- Cosimbescu L., X. Wei, M. Vijayakumar, W. Xu, M.L. Helm, S.D. Burton, and C.M. Sorensen, et al. 2015. "Anion-Tunable Properties and Electrochemical Performance of Functionalized Ferrocene Compounds." Scientific Reports 5. PNNL-SA-104406. doi:10.1038/srep14117
- Crawford A.J., V.V. Viswanathan, D.E. Stephenson, W. Wang, E.C. Thomsen, D.M. Reed, and B. Li, et al. 2015. "Comparative analysis for various redox flow batteries chemistries using a cost performance model." Journal of Power Sources 293. PNNL-SA-108277. doi:10.1016/j.jpowsour.2015.05.066
- Deng X., M.Y. Hu, X. Wei, W. Wang, Z. Chen, J. Liu, and J.Z. Hu. 2015. "Natural Abundance 17O Nuclear Magnetic Resonance and Computational Modeling Studies of Lithium Based Liquid Electrolytes." Journal of Power Sources 285. PNNL-SA-105759. doi:10.1016/j.jpowsour.2015.03.091
- Li B., Z. Nie, M. Vijayakumar, G. Li, J. Liu, V.L. Sprenkle, and W. Wang. 2015. "Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery." Nature Communications 6. PNNL-SA-103966. doi:10.1038/ncomms7303
- Reed D.M., E.C. Thomsen, W. Wang, Z. Nie, B. Li, X. Wei, and B.J. Koeppel, et al. 2015. "Performance of Nafion� N115, Nafion� NR-212, and Nafion� NR-211 in a 1 kW Class All Vanadium Mixed Acid Redox Flow Battery." Journal of Power Sources 285. PNNL-SA-108089. doi:10.1016/j.jpowsour.2015.03.099
- Shao Y., Y. Cheng, W. Duan, W. Wang, Y. Lin, Y. Wang, and J. Liu. 2015. "Nanostructured Electrocatalysts for PEM Fuel Cells and Redox Flow Batteries: a Selected Review." ACS Catalysis 5, no. 12:7288-7298. PNNL-SA-112187. doi:10.1021/acscatal.5b01737
- Vijayakumar M., N. Govind, B. Li, X. Wei, Z. Nie, S. Thevuthasan, and V.L. Sprenkle, et al. 2015. "Aqua-vanadyl ion interaction with Nafion� membranes." Frontiers in Energy Research 3. PNNL-SA-108088. doi:10.3389/fenrg.2015.00010
- Vijayakumar M., Z. Nie, E.D. Walter, J.Z. Hu, J. Liu, V.L. Sprenkle, and W. Wang. 2015. "Understanding Aqueous Electrolyte Stability through Combined Computational and Magnetic Resonance Spectroscopy: A Case Study on Vanadium Redox Flow Battery Electrolytes." ChemPlusChem 80, no. 2:428-437. PNNL-SA-102555. doi:10.1002/cplu.201402139
- Wei X., B. Li, and W. Wang. 2015. "Porous Polymeric Composite Separators for Redox Flow Batteries." Polymer Reviews 55, no. 2:247-272. PNNL-SA-103480. doi:10.1080/15583724.2015.1011276
- Wei X., G. Xia, B.W. Kirby, E.C. Thomsen, B. Li, Z. Nie, and G.L. Graff, et al. 2015. "An Aqueous Redox Flow Battery Based on Neutral Alkali Metal Ferri/ferrocyanide and Polysulfide Electrolytes." Journal of the Electrochemical Society 163, no. 1:A5150-A5153. PNNL-SA-93471. doi:10.1149/2.0221601jes
- Wei X., L. Cosimbescu, W. Xu, J.Z. Hu, M. Vijayakumar, J. Feng, and M.Y. Hu, et al. 2015. "Towards High-Performance Nonaqueous Redox Flow Electrolyte through Ionic Modification of Active Species." Advanced Energy Materials 5, no. 1:Article No. 1400678. PNNL-SA-97506. doi:10.1002/aenm.201400678
- Wei X., W. Xu, J. Huang, L. Zhang, E.D. Walter, C.W. Lawrence, and M. Vijayakumar, et al. 2015. "Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery." Angewandte Chemie International Edition 127, no. 30:8808-8811. PNNL-SA-107928. doi:10.1002/ange.201501443
2014
- Han K., N. Rajput, X. Wei, W. Wang, J.Z. Hu, K.A. Persson, and K.T. Mueller. 2014. "Diffusional Motion of Redox Centers in Carbonate Electrolytes." Journal of Chemical Physics 141, no. 10:104509. PNNL-SA-103453. doi:10.1063/1.4894481
- Ji L., M. Gu, Y. Shao, X. Li, M.H. Engelhard, B.W. Arey, and W. Wang, et al. 2014. "Controlling SEI Formation on SnSb-Porous Carbon Nanofibers for Improved Na Ion Storage." Advanced Materials 26, no. 18:2901-2908. PNNL-SA-98915. doi:10.1002/adma.201304962
- Li B., M. Gu, Z. Nie, X. Wei, C.M. Wang, V.L. Sprenkle, and W. Wang. 2014. "Nanorod Niobium Oxide as Powerful Catalysts for an All Vanadium Redox Flow Battery." Nano Letters 14, no. 1:158-165. PNNL-SA-98433. doi:10.1021/nl403674a
- Li B., Q. Luo, X. Wei, Z. Nie, E.C. Thomsen, B. Chen, and V.L. Sprenkle, et al. 2014. "Capacity Decay Mechanism of Microporous Separator-Based All-Vanadium Redox Flow Batteries and its Recovery." ChemSusChem 7, no. 2:577-584. PNNL-SA-94959. doi:10.1002/cssc.201300706
- Viswanathan V.V., A.J. Crawford, D.E. Stephenson, S. Kim, W. Wang, B. Li, and G.W. Coffey, et al. 2014. "Cost and Performance Model for Redox Flow Batteries." Journal of Power Sources 247. PNNL-SA-91534. doi:10.1016/j.jpowsour.2012.12.023
- Wang W., X. Wei, D. Choi, X. Lu, G. Yang, and C. Sun. 2014. "Electrochemical cells for medium- and large-scale energy storage." In Advances in Batteries for Medium and Large-Scale Energy Storage, edited by C Menictas, M Skyllas-Kazacos and LT Mariana. 3-28. Waltham, Massachusetts:Woodhead Publishing. PNNL-SA-100840.
- Wei X., W. Xu, M. Vijayakumar, L. Cosimbescu, T.L. Liu, V.L. Sprenkle, and W. Wang. 2014. "TEMPO-based Catholyte for High Energy Density Nonaqueous Redox Flow Batteries." Advanced Materials 26, no. 45:7649-7653. PNNL-SA-105126. doi:10.1002/adma.201403746
2013
- Kim S., E.C. Thomsen, G. Xia, Z. Nie, J. Bao, K.P. Recknagle, and W. Wang, et al. 2013. "1 kW / 1kWh Advanced Vanadium Redox Flow Battery Utilizing Mixed Acid Electrolytes." Journal of Power Sources 237. PNNL-SA-92689. doi:10.1016/j.jpowsour.2013.02.045
- Li B., L. Li, W. Wang, Z. Nie, B. Chen, X. Wei, and Q. Luo, et al. 2013. "Fe/V Redox Flow Battery Electrolyte Investigation and Optimization." Journal of Power Sources 229. PNNL-SA-89815. doi:10.1016/j.jpowsour.2012.11.119
- Li B., M. Gu, Z. Nie, Y. Shao, Q. Luo, X. Wei, and X. Li, et al. 2013. "Bismuth Nanoparticle Decorating Graphite Felt as a High-Performance Electrode for an All-Vanadium Redox Flow Battery." Nano Letters 13, no. 3:1330-1335. PNNL-SA-92494. doi:10.1021/nl400223v
- Luo Q., L. Li, W. Wang, Z. Nie, X. Wei, B. Li, and B. Chen, et al. 2013. "Capacity Decay and Remediation of Nafion-based All-Vanadium Redox Flow Batteries." ChemSusChem 6, no. 2:268-274. PNNL-SA-89997. doi:10.1002/cssc.201200730
- Sprenkle V.L., W. Wang, Q. Luo, X. Wei, B. Li, Z. Nie, and B. Chen, et al. 2013. "Redox Flow Battery Development for Stationary Energy Storage Applications at Pacific Northwest National Laboratory." In International Flow Battery Forum, June 26-27, 2013, Dublin, Ireland, edited by A. Price and J. Cainey, 48-49. Malmesbury:Swanbarton Limited. PNNL-SA-95927.
- Vijayakumar M., W. Wang, Z. Nie, V.L. Sprenkle, and J.Z. Hu. 2013. "Elucidating the Higher Stability of Vanadium (V) Cations in Mixed Acid Based Redox Flow Battery Electrolytes." Journal of Power Sources 241. PNNL-SA-95082. doi:10.1016/j.jpowsour.2013.04.072
- Wang W., D. Choi, and Z. Yang. 2013. "Li-Ion Battery with LiFePO4 Cathode and Li4Ti5O12 Anode for Stationary Energy Storage." Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science 44A, no. 1 Supplement:21-25. PNNL-SA-74420. doi:10.1007/s11661-012-1284-4
- Wang W., Q. Luo, B. Li, X. Wei, L. Li, and Z. Yang. 2013. "Recent Progress in Redox Flow Battery Research and Development." Advanced Functional Materials 23, no. 8:970-986. PNNL-SA-86016. doi:10.1002/adfm.201200694
- Wei X., Q. Luo, B. Li, Z. Nie, E. Miller, J. Chambers, and V.L. Sprenkle, et al. 2013. "Performance Evaluation of Microporous Separator in Fe/V Redox Flow Battery." ECS Transactions 45, no. 26:17-24. PNNL-SA-88565. doi:10.1149/04526.0017ecst
- Wei X., Z. Nie, Q. Luo, B. Li, B. Chen, K.L. Simmons, and V.L. Sprenkle, et al. 2013. "Nanoporous Polytetrafluoroethylene/Silica Composite Separator as a High-Performance All-Vanadium Redox Flow Battery Membrane." Advanced Energy Materials 3, no. 9:1215-1220. PNNL-SA-91588. doi:10.1002/aenm.201201112
- Wei X., Z. Nie, Q. Luo, B. Li, V.L. Sprenkle, and W. Wang. 2013. "Polyvinyl Chloride/Silica Nanoporous Composite Separator for All-Vanadium Redox Flow Battery Applications." Journal of the Electrochemical Society 160, no. 8:A1215 - A1218. PNNL-SA-92548.
- Xu W., X. Chen, W. Wang, D. Choi, F. Ding, J. Zheng, and Z. Nie, et al. 2013. "Simply AlF3-treated Li4Ti5O12 composite anode materials for stable and ultrahigh power lithium-ion batteries." Journal of Power Sources 236. PNNL-SA-91887. doi:10.1016/j.jpowsour.2013.02.055
2012
- Cao Y., L. Xiao, M.L. Sushko, W. Wang, B. Schwenzer, J. Xiao, and Z. Nie, et al. 2012. "Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications." Nano Letters 12, no. 7:3783-3787. PNNL-SA-88364. doi:10.1021/nl3016957
- Ding F., W. Xu, D. Choi, W. Wang, X. Li, M.H. Engelhard, and X. Chen, et al. 2012. "Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries." Journal of Materials Chemistry 22, no. 25:12745-12751. PNNL-SA-85418. doi:10.1039/c2jm31015e
- Li L., S. Kim, G. Xia, W. Wang, and Z. Yang. 2012. Advanced Redox Flow Batteries for Stationary Electrical Energy Storage. PNNL-21174. Richland, WA: Pacific Northwest National Laboratory. Advanced Redox Flow Batteries for Stationary Electrical Energy Storage
- Li X., P. Meduri, X. Chen, W.N. Qi, M.H. Engelhard, W. Xu, and F. Ding, et al. 2012. "Hollow Core-Shell Structured Porous Si-C Nanocomposites for Li-Ion Battery Anodes." Journal of Materials Chemistry 22, no. 22:11014-11017. PNNL-SA-85843. doi:10.1039/C2JM31286G
- Luo Q., L. Li, Z. Nie, W. Wang, X. Wei, B. Li, and B. Chen, et al. 2012. "In-situ Investigation of Vanadium Ion Transport in Redox Flow Battery." Journal of Power Sources 218, no. 1:15-20. PNNL-SA-87264. doi:10.1016/j.jpowsour.2012.06.066
- Stephenson D.E., S. Kim, F. Chen, E.C. Thomsen, V.V. Viswanathan, W. Wang, and V.L. Sprenkle. 2012. "Electrochemical Model of the Fe/V Redox Flow Battery." Journal of the Electrochemical Society 159, no. 12:A1993-A2000. PNNL-SA-88363. doi:10.1149/2.052212jes
- Wang W., L. Li, Z. Nie, B. Chen, Q. Luo, Y. Shao, and X. Wei, et al. 2012. "A New Hybrid Redox Flow Battery with Multiple Redox Couples." Journal of Power Sources 216. PNNL-SA-84238. doi:10.1016/j.jpowsour.2012.05.032
- Wang W., W. Xu, L. Cosimbescu, D. Choi, L. Li, and Z. Yang. 2012. "Anthraquinone with Tailored Structure for Nonaqueous Metal-Organic Redox Flow Battery." Chemical Communications 48, no. 53:6669-6671. PNNL-SA-87199. doi:10.1039/C2CC32466K
- Wang W., Z. Nie, B. Chen, F. Chen, Q. Luo, X. Wei, and G. Xia, et al. 2012. "A New Fe/V Redox Flow Battery Using Sulfuric/Chloric Mixed Acid Supporting Electrolyte." Advanced Energy Materials 2, no. 4:487-493. PNNL-SA-81184. doi:10.1002/aenm.201100527
- Wei X., L. Li, Q. Luo, Z. Nie, W. Wang, B. Li, and G. Xia, et al. 2012. "Microporous Separators for Fe/V Redox Flow Batteries." Journal of Power Sources 218, no. 1:39-45. PNNL-SA-86902. doi:10.1016/j.jpowsour.2012.06.073
- Xiao L., Y. Cao, J. Xiao, W. Wang, L. Kovarik, Z. Nie, and J. Liu. 2012. "High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications." Chemical Communications 48, no. 27:3321-3323. PNNL-SA-85851. doi:10.1039/C2CC17129E
- Zhang J., W. Wang, J. Xiao, W. Xu, G.L. Graff, Z. Yang, and D. Choi, et al. 2012. "Silicon Based Anodes for Li-Ion Batteries." In Encyclopedia of Sustainability Science and Technology. New York, New York:Springer. PNNL-SA-75702.
2011
- Cao Y., L. Xiao, W. Wang, D. Choi, Z. Nie, J. Yu, and L.V. Saraf, et al. 2011. "Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life." Advanced Materials 23, no. 28:3155-3160. PNNL-SA-78702. doi:10.1002/adma.201100904
- Choi D., J. Xiao, Y. Choi, J.S. Hardy, M. Vijayakumar, M.S. Bhuvaneswari, and J. Liu, et al. 2011. "Thermal Stability and Phase Transformation of Electrochemically Charged/Discharged LiMnPO4 Cathode for Li-Ion Battery." Energy & Environmental Science 4, no. 11:4560-4566. PNNL-SA-79713. doi:10.1039/C1EE01501J
- Choi D., W. Wang, and Z. Yang. 2011. "Material Challenges and Perspectives." In Lithium Ion Batteries: Advanced Materials and Technologies, edited by X Yuan, et al. 1-50. Boca Raton, Florida:CRC Press. PNNL-SA-76721.
- Li L., S. Kim, W. Wang, M. Vijayakumar, Z. Nie, B. Chen, and J. Zhang, et al. 2011. "A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-scale Energy Storage." Advanced Energy Materials 1, no. 3:394-400. PNNL-SA-75871.
- Wang W., S. Kim, B. Chen, Z. Nie, J. Zhang, G. Xia, and L. Li, et al. 2011. "A New Redox Flow Battery Using Fe/V Redox Couples in Chloride Supporting Electrolyte." Energy & Environmental Science 4, no. 10:4068-4073. PNNL-SA-76658. doi:10.1039/C0EE00765J
- Zhang J., L. Li, Z. Nie, B. Chen, M. Vijayakumar, S. Kim, and W. Wang, et al. 2011. "Effects of additives on the stability of electrolytes for all-vanadium redox flow batteries." Journal of Applied Electrochemistry 41, no. 10 - Special Issue S1:1215-1221. PNNL-SA-76986. doi:10.1007/s10800-011-0312-1
2010
- Choi D., D. Wang, I. Bae, J. Xiao, Z. Nie, W. Wang, and V.V. Viswanathan, et al. 2010. "LiMnPO4 Nanoplate Grown via Solid-State Reaction in Molten Hydrocarbon for Li-ion Battery Cathode." Nano Letters 10, no. 8:2799-2805. PNNL-SA-70835. doi:10.1021/nl1007085
- Xiao J., W. Xu, D. Wang, D. Choi, W. Wang, X. Li, and G.L. Graff, et al. 2010. "Stabilization of Silicon Anode for Li-Ion Batteries." Journal of the Electrochemical Society 157, no. 10:A1047-A1051. PNNL-SA-72047. doi:10.1149/1.3464767
- Xu T., W. Wang, M. Gordin, D. Wang, and D. Choi. 2010. "Lithium-ion Batteries for Stationary Energy Storage." JOM. The Journal of the Minerals, Metals and Materials Society 62, no. 9:24-30. PNNL-SA-74003.