Biomedical Scientist
Biomedical Scientist

Biography

Tao Liu is a Senior Staff Scientist in the Integrative Omics group in the Biological Sciences Division at PNNL. His work at PNNL has centered on developing and applying innovative methods and technologies that enable high-throughput, sensitive, and quantitative liquid chromatography-mass spectrometry (LC-MS)-based proteomic measurements of complex biological and clinical samples (e.g., tissues, proximal fluids, and blood plasma) in diseases such as cancer. He is currently the principal investigator of several large-scale cancer studies, including the National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) Proteome Characterization Center, the NCI Early Detection Research Network (EDRN) Biomarker Reference and Resource Center, and the Department of Defense Framingham projects as part of the Cancer Moonshot efforts. His research includes development and application of advanced MS technologies for protein post-translational modifications, single-cell, and multiomic characterization of cancers, leading to improved understanding of aberrant regulatory and signal transduction networks underlying cancers, as well as cancer biomarker discovery and verification.

Prior to joining PNNL, Liu was a postdoc at the Howard Hughes Medical Institute at the University of Washington. He received his BS in chemistry from Nanchang University, China, in 1996 and a PhD in biochemistry and molecular biology in 2001 from Shanghai Institute of Biochemistry, Chinese Academy of Sciences.

Research Interest

  • Quantitative proteomics and PTMs
  • Biomarker discovery and verification
  • Integrative omics and cancer biology
  • Neurologic diseases (e.g., chronic fatigue, multiple sclerosis)

Education

  • PhD in Biochemistry and Molecular Biology, Shanghai Institute of Biochemistry, 2001
  • BS in Chemistry, Nanchang University, 1996

Affiliations and Professional Service

  • American Society for Mass Spectrometry
  • American Association for Cancer Research
  • Editorial Board, Frontiers in MicroBiotechnology
  • Ad-hoc grant reviewer, Emerging Technologies and Training Neurosciences (ETTN) and Cancer Biomarker Study Section (CBSS), National Institutes of Health
  • External Advisory Board, Baylor College of Medicine CPRIT Cancer Proteomics and Metabolomics Core Facility

Awards and Recognitions

  • Ying-Lai Wang Award, Shanghai Institute of Biochemistry (1999)
  • Hong-Bing Wang Award, Nanchang University (1996)
  • Xiang-Mei Chen Award, Nanchang University (1994)
  • The First Class Scholarship, Nanchang University (1992-1996)

Publications

Bibliography

2020

  • Dou Y., E. Kawaler, D.C. Zhou, M.A. Gritsenko, C. Huang, L. Blumenberg, and A. Karpova, et al. 2020. "Proteogenomic Characterization of Endometrial Carcinoma." Cell 180, no. 4:729-748.e26. PNNL-SA-147326. doi:10.1016/j.cell.2020.01.026
  • Gao Y., Y. Wang, Y. Chen, H. Wang, D. Young, T. Shi, and Y. Song, et al. 2020. "Proteomic Tissue-based Classifier for Early Prediction of Prostate Cancer Progression." Cancers 12, no. 5:1268. PNNL-SA-149705. doi:10.3390/cancers12051268
  • McDermott J.E., O.A. Arshad, V.A. Petyuk, Y. Fu, M.A. Gritsenko, T.R. Clauss, and R.J. Moore, et al. 2020. "Proteogenomic characterization of ovarian HGSC implicates mitotic kinases, replication stress in observed chromosomal instability." Cell Reports Medicine 1, no. 1:Article No. 100004. PNNL-SA-145681. doi:10.1016/j.xcrm.2020.100004
  • Tsai C., R. Zhao, S.M. Williams, R.J. Moore, K.D. Schultz, W.B. Chrisler, and L. Pasa Tolic, et al. 2020. "An Improved Boosting to Amplify Signal with Isobaric Labeling (iBASIL) Strategy for Precise Quantitative Single-cell Proteomics." Molecular and Cellular Proteomics 19, no. 5:828-838. PNNL-SA-149183. doi:10.1074/mcp.RA119.001857

2019

  • Arshad O.A., V.G. Danna, V.A. Petyuk, P.D. Piehowski, T. Liu, K.D. Rodland, and J.E. McDermott. 2019. "An integrative analysis of tumor proteomic and phosphoproteomic profiles to examine the relationships between kinase activity and phosphorylation." Molecular and Cellular Proteomics 18, no. 8 suppl 1:S26-S36. PNNL-SA-145629. doi:10.1074/mcp.RA119.001540
  • Cuesta R., M.A. Gritsenko, V.A. Petyuk, A.K. Shukla, C. Tsai, T. Liu, and J.E. McDermott, et al. 2019. "Phosphoproteome Analysis Reveals Estrogen-ER pathway as a modulator of mTOR activity via DEPTOR." Molecular and Cellular Proteomics 18, no. 8:1607-1618. PNNL-SA-145628. doi:10.1074/mcp.RA119.001506
  • Dou M., C. Tsai, P.D. Piehowski, Y. Wang, T.L. Fillmore, R. Zhao, and R.J. Moore, et al. 2019. "Automated Nanoflow Two-Dimensional Reversed-Phase Liquid Chromatography System Enables In-Depth Proteome and Phosphoproteome Profiling of Nanoscale Samples." Analytical Chemistry 91, no. 15:9707-9715. PNNL-SA-141437. doi:10.1021/acs.analchem.9b01248
  • Gibbons B.C., T.L. Fillmore, Y. Gao, R.J. Moore, T. Liu, E.S. Nakayasu, and T.O. Metz, et al. 2019. "Rapidly Assessing the Quality of Targeted Proteomics Experiments through Monitoring Stable-Isotope Labeled Standards." Journal of Proteome Research 18, no. 2:694-699. PNNL-SA-137457. doi:10.1021/acs.jproteome.8b00688
  • Stevens S., T. Liu, F.R. Bahjat, V.A. Petyuk, A.A. Schepmoes, R.L. Sontag, and M.A. Gritsenko, et al. 2019. "Preconditioning in the Rhesus Macaque Induces a Proteomic Signature Following Cerebral Ischemia that Is Associated with Neuroprotection." Translational Stroke Research 10, no. 4:440-448. PNWD-SA-10567. doi:10.1007/s12975-018-0670-7
  • Stevens S.L., T. Liu, F.R. Bahjat, V.A. Petyuk, A.A. Schepmoes, R.L. Sontag, and M.A. Gritsenko, et al. 2019. "Preconditioning in the Rhesus Macaque Induces a Proteomic Signature Following Cerebral Ischemia That Is Associated With Neuroprotection." Translational Stroke Research 10, no. 4:440-448. PNNL-SA-153569. doi:10.1007/s12975-018-0670-7
  • Tsai C., J.S. Smith, K. Krajewski, R. Zhao, A.M. Moghieb, C.D. Nicora, and X. Xiong, et al. 2019. "Tandem Mass Tag Labeling Facilitates Reversed-Phase Liquid Chromatography-Mass Spectrometry Analysis of Hydrophilic Phosphopeptides." Analytical Chemistry 91, no. 18:11606-11613. PNNL-SA-142808. doi:10.1021/acs.analchem.9b01814
  • Yi L., C. Tsai, E. Dirice, A.C. Swensen, J. Chen, T. Shi, and M.A. Gritsenko, et al. 2019. "Boosting to Amplify Signal with Isobaric Labeling (BASIL) Strategy for Comprehensive Quantitative Phosphoproteomic Characterization of Small Populations of Cells." Analytical Chemistry 91, no. 9:5794-5801. PNNL-SA-140381. doi:10.1021/acs.analchem.9b00024
  • Zhang P., M.J. Gaffrey, Y. Zhu, W.B. Chrisler, T.L. Fillmore, L. Yi, and C.D. Nicora, et al. 2019. "Carrier-assisted single-tube processing approach for targeted proteomics analysis of low numbers of mammalian cells." Analytical Chemistry 91, no. 2:1441-1451. PNNL-SA-138130. doi:10.1021/acs.analchem.8b04258

2018

  • Chouinard C.D., G. Nagy, I.K. Webb, T. Shi, E.M. Baker, S.A. Prost, and T. Liu, et al. 2018. "Improved Sensitivity and Separations for Phosphopeptides using Online Liquid Chromotography Coupled with Structures for Lossless Ion Manipulations Ion Mobility-Mass Spectrometry." Analytical Chemistry 90, no. 18:10889-10896. PNNL-SA-135107. doi:10.1021/acs.analchem.8b02397
  • Garabedian A., P. Benigni, C. Ramirez, E.M. Baker, T. Liu, R.D. Smith, and F. Fernandez-Lima. 2018. "Towards Discovery and Targeted Peptide Biomarker Detection Using nanoESI-TIMS-TOF MS." Journal of the American Society for Mass Spectrometry 29, no. 5:817-826. PNNL-SA-129610. doi:10.1007/s13361-017-1787-8
  • Hosseini M.M., S.E. Kurtz, S. Abdelhamed, S. Mahmood, M.A. Davare, A. Kaempf, and J. Elferich, et al. 2018. "Inhibition of interleukin-1 receptor-associated kinase-1 is a therapeutic strategy for acute myeloid leukemia subtypes." Leukemia 32, no. 11:2374-2387. PNNL-SA-137772. doi:10.1038/s41375-018-0112-2
  • Mertins P., L.C. Tang, K. Krug, D.J. Clark, M.A. Gritsenko, L. Chen, and K. Clauser, et al. 2018. "Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography-mass spectrometry." Nature Protocols 13, no. 7:1632-1661. PNNL-SA-137930. doi:10.1038/s41596-018-0006-9
  • Piehowski P.D., V.A. Petyuk, R.L. Sontag, M.A. Gritsenko, K.K. Weitz, T.L. Fillmore, and J.S. Moon, et al. 2018. "Residual tissue repositories as a resource for population-based cancer proteomic studies." Clinical Proteomics 15. PNNL-SA-130920. doi:10.1186/s12014-018-9202-4
  • Shi T., M.J. Gaffrey, T.L. Fillmore, C.D. Nicora, L. Yi, P. Zhang, and A.K. Shukla, et al. 2018. "Facile carrier-assisted targeted mass spectrometric approach for proteomic analysis of low numbers of mammalian cells." Communications Biology 1, no. 1:Article No. 103. PNNL-SA-130600. doi:10.1038/s42003-018-0107-6
  • Yi L., T. Shi, M.A. Gritsenko, C. Chan, T.L. Fillmore, B.M. Hess, and A.C. Swensen, et al. 2018. "Targeted Quantification of Phosphorylation Dynamics in the Context of EGFR-MAPK Pathway." Analytical Chemistry 90, no. 8:5256-5263. PNNL-SA-131519. doi:10.1021/acs.analchem.8b00071

2017

  • Nie S., T. Shi, T.L. Fillmore, A.A. Schepmoes, H.M. Brewer, Y. Gao, and E. Song, et al. 2017. "Deep-dive Targeted Quantification for Ultrasensitive Analysis of Proteins in Nondepleted Human Blood Plasma/Serum and Tissues." Analytical Chemistry 89, no. 17:9139-9146. PNNL-SA-126297. doi:10.1021/acs.analchem.7b01878
  • Park J., P.D. Piehowski, C.S. Wilkins, M. Zhou, J.A. Mendoza, G.M. Fujimoto, and B.C. Gibbons, et al. 2017. "Informed-Proteomics: Open Source Software Package for Top-down Proteomics." Nature Methods 14, no. 9:909-914. PNNL-SA-120171. doi:10.1038/nmeth.4388
  • Shi T., S. Quek, Y. Gao, C.D. Nicora, S. Nie, T.L. Fillmore, and T. Liu, et al. 2017. "Multiplexed targeted mass spectrometry assays for prostate cancer-associated urinary proteins." Oncotarget 8, no. 60:101887-101898. PNNL-SA-128413. doi:10.18632/oncotarget.21710
  • Song E., Y. Gao, C. Wu, T. Shi, S. Nie, T.L. Fillmore, and A.A. Schepmoes, et al. 2017. "Targeted proteomic assays for quantitation of proteins identified by proteogenomic analysis of ovarian cancer." Scientific Data. PNNL-SA-122408. doi:10.1038/sdata.2017.91
  • Wang S., F. Yang, V.A. Petyuk, A.K. Shukla, M.E. Monroe, M.A. Gritsenko, and K.D. Rodland, et al. 2017. "Quantitative proteomics identifies altered O-GlcNAcylation of structural, synaptic and memory-associated proteins in Alzheimer's disease." The Journal of Pathology243, no. 1:78-88. PNNL-SA-119241. doi:10.1002/path.4929
  • Zhou J., L. Chen, B. Zhang, Y. Tian, T. Liu, S.N. Thomas, and L. Chen, et al. 2017. "Quality Assessments of Long-Term Quantitative Proteomic Analysis of Breast Cancer Xenograft Tissues." Journal of Proteome Research 16, no. 12:4523-4530. PNNL-SA-105677. doi:10.1021/acs.jproteome.7b00362

2016

  • Burnum-Johnson K.E., S. Nie, C.P. Casey, M.E. Monroe, D.J. Orton, Y.M. Ibrahim, and M.A. Gritsenko, et al. 2016. "Simultaneous Proteomic Discovery and Targeted Monitoring using Liquid Chromatography, Ion Mobility Spectrometry and Mass Spectrometry." Molecular and Cellular Proteomics 15, no. 12:3694-3705. PNNL-SA-118308. doi:10.1074/mcp.M116.061143
  • Gritsenko M.A., Z. Xu, T. Liu, and R.D. Smith. 2016. "Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS." In Quantitative Proteomics by Mass Spectrometry, 2nd edition. Series: Methods in Molecular Biology, edited by S Sechi. 237-247. New York, New York:Springer. PNNL-SA-107351. 
  • Hatakeyama H., S.Y. Wu, Y.A. Lyons, S. Pradeep, W. Wang, Q. Huang, and K.A. Court, et al. 2016. "Role of CTGF in Sensitivity to Hyperthermia in Ovarian and Uterine Cancers." Cell Reports 17, no. 6:1621-1631. PNNL-SA-120868. doi:10.1016/j.celrep.2016.10.020
  • Hoofnagle A.N., J.R. Whiteaker, S.A. Carr, E. Kuhn, T. Liu, S.A. Massoni, and S.N. Thomas, et al. 2016. "Recommendations for the generation, quantification, storage and handling of peptides used for mass spectrometry-based assays." Clinical Chemistry 62, no. 1:48-69. PNNL-SA-113208. doi:10.1373/clinchem.2015.250563
  • Ruggles K., Z. Tang, Z. Tang, X. Wang, H. Grover, M. Askenazi, and J. Teubl, et al. 2016. "An Analysis of the Sensitivity of Proteogenomic Mapping of Somatic Mutations and Novel Splicing Events in Cancer." Molecular and Cellular Proteomics 15, no. 3:1060-1071. PNNL-SA-105676. doi:10.1074/mcp.M115.056226
  • Shi T., E. Song, S. Nie, K.D. Rodland, T. Liu, W. Qian, and R.D. Smith. 2016. "Advances in targeted proteomics and applications to biomedical research." Proteomics 16, no. 15-16:2160-2182. PNNL-SA-120776. doi:10.1002/pmic.201500449
  • Tabb D.L., X. Wang, S.A. Carr, K. Clauser, P. Mertins, M.C. Chambers, and J.D. Holman, et al. 2016. "Reproducibility of differential proteomic technologies in CPTAC fractionated xenografts." Journal of Proteome Research 15, no. 3:691-706. PNNL-SA-113210. doi:10.1021/acs.jproteome.5b00859
  • Wang H., T. Shi, W. Qian, T. Liu, J. Kagan, S. Srivastava, and R.D. Smith, et al. 2016. "The Clinical Impact of Recent Advances in LC-MS for Cancer Biomarker Discovery and Verification." Expert Review of Proteomics 13, no. 1:99-114. PNNL-SA-113659. doi:10.1586/14789450.2016.1122529
  • Whiteaker J.R., G. Halusa, A.N. Hoofnagle, V. Sharma, B. MacLean, P. Yan, and J. Wrobel, et al. 2016. "Using the CPTAC Assay Portal to identify and implement highly characterized targeted proteomics assays." In Quantitative Proteomics by Mass Spectrometry, 2nd edition. Series: Methods in Molecular Biology, edited by S Sechi. 223-263. New York, New York:Springer. PNNL-SA-110086.  doi:10.1007/978-1-4939-3524-6_13
  • Wu C., J. Duan, T. Liu, R.D. Smith, and W. Qian. 2016. "Contributions of Immunoaffinity Chromatography to Deep Proteome Profiling of Human Biofluids." Journal of Chromatography B 1021. PNNL-SA-112289. doi:10.1016/j.jchromb.2016.01.015
  • Zhang H., T. Liu, Z. Zhang, S.H. Payne, B. Zhang, J.E. McDermott, and J. Zhou, et al. 2016. "Integrated proteogenomic characterization of human high grade serous ovarian cancer." Cell 166, no. 3:755-765. PNNL-SA-107151. doi:10.1016/j.cell.2016.05.069

2015

  • He J., A.A. Schepmoes, T. Shi, C. Wu, T.L. Fillmore, Y. Gao, and R.D. Smith, et al. 2015. "Analytical platform evaluation for quantification of ERG in prostate cancer using protein and mRNA detection methods." Journal of Translational Medicine 13. PNNL-SA-107827. doi:10.1186/s12967-015-0418-z
  • Wang H., Y. Yang, Y. Li, B. Bai, X. Wang, H. Tan, and T. Liu, et al. 2015. "Systematic Optimization of Long Gradient Chromatography Mass Spectrometry for Deep Analysis of Brain Proteome." Journal of Proteome Research 14, no. 2:829-838. PNNL-SA-105913. doi:10.1021/pr500882h
  • Wu C., M.E. Monroe, Z. Xu, G.W. Slysz, S.H. Payne, K.D. Rodland, and T. Liu, et al. 2015. "An Optimized Informatics Pipeline for Mass Spectrometry-Based Peptidomics." Journal of the American Society for Mass Spectrometry 26, no. 12:2002-2008. PNNL-SA-108032. doi:10.1007/s13361-015-1169-z
  • Wu C., T. Liu, E.S. Baker, K.D. Rodland, and R.D. Smith. 2015. "Mass spectrometry for biomarker development." In General Methods in Biomarker Research and their Applications. Biomarkers in Disease: Methods, Discoveries and Applications, edited by V Preedy and V Patel. 17-48. Heidelberg:Springer. PNNL-SA-97608. 
  • Xu Z., C. Wu, F. Xie, G.W. Slysz, N. Tolic, M.E. Monroe, and V.A. Petyuk, et al. 2015. "Comprehensive Quantitative Analysis of Ovarian and Breast Cancer Tumor Peptidomes." Journal of Proteome Research 14, no. 1:422-433. PNNL-SA-103951. doi:10.1021/pr500840w

2014

  • Carr S.A., S.E. Abbateillo, B.L. Ackermann, C.H. Borchers, B. Domon, E.W. Deutsch, and R. Grant, et al. 2014. "Targeted Peptide Measurements in Biology and Medicine: Best Practices for Mass Spectrometry-based Assay Development Using a Fit-for-Purpose Approach." Molecular and Cellular Proteomics 13, no. 3:907-917. PNNL-SA-102320. doi:10.1074/mcp.M113.036095
  • Guo J., M.J. Gaffrey, D. Su, T. Liu, D.G. Camp, R.D. Smith, and W. Qian. 2014. "Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications." Nature Protocols 9, no. 1:64-75. PNNL-SA-96060. doi:10.1038/nprot.2013.161
  • He J., X. Sun, T. Shi, A.A. Schepmoes, T.L. Fillmore, V.A. Petyuk, and F. Xie, et al. 2014. "Antibody-independent Targeted Quantification of TMPRSS2-ERG Fusion Protein Products in Prostate Cancer." Molecular Oncology 8, no. 7:1169-1180. PNNL-SA-97917. doi:10.1016/j.molonc.2014.02.004
  • Hyung S., P.D. Piehowski, R.J. Moore, D.J. Orton, A.A. Schepmoes, T.R. Clauss, and R.K. Chu, et al. 2014. "Microscale Depletion of High Abundance Proteins in Human Biofluids using IgY14 Immunoaffinity Resin: Analysis of Human Plasma and Cerebrospinal Fluid." Analytical and Bioanalytical Chemistry 406, no. 28:7117-7125. PNNL-SA-92758. doi:10.1007/s00216-014-8058-3
  • Mertins P., F. Yang, T. Liu, D. Mani, V.A. Petyuk, M. Gillette, and K. Clauser, et al. 2014. "Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels." Molecular & Cellular Proteomics. MCP13, no. 7:1690-1704. PNNL-SA-98702. doi:10.1074/mcp.M113.036392
  • Shi T., Y. Gao, M.J. Gaffrey, C.D. Nicora, T.L. Fillmore, W.B. Chrisler, and M.A. Gritsenko, et al. 2014. "Sensitive Targeted Quantification of ERK Phosphorylation Dynamics and Stoichiometry in Human Cells without Affinity Enrichment." Analytical Chemistry 87, no. 2:1103-1110. PNNL-SA-103421. doi:10.1021/ac503797x
  • Shi T., Y. Gao, S. Quek, T.L. Fillmore, C.D. Nicora, D. Su, and R. Zhao, et al. 2014. "A highly sensitive targeted mass spectrometric assay for quantification of low-abundance AGR2 in human urine and serum." Journal of Proteome Research 13, no. 2:875-882. PNWD-SA-10119. doi:10.1021/pr400912c
  • Wang S., F. Yang, D.G. Camp, K.D. Rodland, W. Qian, T. Liu, and R.D. Smith. 2014. "Proteomic Approaches for Site-specific O-GlcNAcylation Analysis." Bioanalysis 6, no. 19:2571-2580. PNNL-SA-102529. doi:10.4155/bio.14.239
  • Whiteaker J.R., G. Halusa, A.N. Hoofnagle, V. Sharma, B. MacLean, P. Yan, and J. Wrobel, et al. 2014. "CPTAC Assay Portal: a repository of targeted proteomic assays." Nature Methods11, no. 7:703-704. PNNL-SA-103950. doi:10.1038/nmeth.3002
  • Woo S., S. Cha, S. Na, C. Guest, T. Liu, R.D. Smith, and K.D. Rodland, et al. 2014. "Proteogenomic strategies for identification of aberrant cancer peptides using large-scale Next Generation Sequencing data." Proteomics 14, no. 23-24:2719-2730. PNNL-SA-105664. doi:10.1002/pmic.201400206
  • Wu C., T. Shi, J.N. Brown, J. He, Y. Gao, T.L. Fillmore, and A.K. Shukla, et al. 2014. "Expediting SRM assay development for large-scale targeted proteomics experiments." Journal of Proteome Research 13, no. 10:4479-87. PNNL-SA-102906. doi:10.1021/pr500500d

2013

  • Finnerty C.C., M.G. Jeschke, W. Qian, A. Kaushal, W. Xiao, T. Liu, and M.A. Gritsenko, et al. 2013. "DETERMINATION OF BURN PATIENT OUTCOME BY LARGE-SCALE QUANTITATIVE DISCOVERY PROTEOMICS." Critical Care Medicine 41, no. 6:1421-1434. PNWD-SA-9845. doi:10.1097/CCM.0b013e31827c072e
  • Schutzer S.E., T.E. Angel, T. Liu, A.A. Schepmoes, F. Xie, J.P. Bergquist, and L. Vecsei, et al. 2013. "Gray Matter Is Targeted in First-Attack Multiple Sclerosis." PLoS One 8, no. 9:E6617. PNNL-SA-98547. doi:10.1371/journal.pone.0066117
  • Shi T., T.L. Fillmore, Y. Gao, R. Zhao, J. He, A.A. Schepmoes, and C.D. Nicora, et al. 2013. "Long-Gradient Separations Coupled with Selected Reaction Monitoring for Highly Sensitive, Large Scale Targeted Protein Quantification in a Single Analysis." Analytical Chemistry 85, no. 19:9196-9203. PNNL-SA-96700. doi:10.1021/ac402105s
  • Shi T., X. Sun, Y. Gao, T.L. Fillmore, A.A. Schepmoes, R. Zhao, and J. He, et al. 2013. "Targeted quantification of low ng/mL level proteins in human serum without immunoaffinity depletion." Journal of Proteome Research 12, no. 7:3353-3361. PNNL-SA-92544. doi:10.1021/pr400178v

2012

  • Baker E.S., T. Liu, V.A. Petyuk, K.E. Burnum-Johnson, Y.M. Ibrahim, G.A. Anderson, and R.D. Smith. 2012. "Mass Spectrometry for Translational Proteomics: Progress and Clinical Implications." Genome Medicine 4. PNNL-SA-86783. doi:10.1186/gm364
  • Chauvin T., F. Xie, T. Liu, C.D. Nicora, F. Yang, D.G. Camp, and R.D. Smith, et al. 2012. "A Systematic Analysis of a Deep Mouse Epididymal Sperm Proteome." Biology of Reproduction87, no. 6:Article No. 141. PNNL-SA-90200. doi:10.1095/biolreprod.112.104208
  • Hu Z., E.R. Browne, T. Liu, T.E. Angel, P.C. Ho, and E. Chun Yong Chan. 2012. "Metabonomic Profiling of TASTPM Transgenic Alzheimer's Disease Mouse Model." Journal of Proteome Research 11, no. 12:5903-5913. PNNL-SA-90706. doi:10.1021/pr300666p
  • Liu T., M. Hossain, A.A. Schepmoes, T.L. Fillmore, L.J. Sokoll, S.R. Kronewitter, and G. Izmirlian, et al. 2012. "Analysis of Serum Total and Free PSA Using Immunoaffinity Depletion Coupled to SRM: Correlation with Clinical Immunoassay Tests." Journal of Proteomics 75, no. 15:4747-4757. PNNL-SA-83777. doi:10.1016/j.jprot.2012.01.035
  • Shi T., D. Su, T. Liu, K. Tang, D.G. Camp, W. Qian, and R.D. Smith. 2012. "Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics." Proteomics 12, no. 8:1074-1092. PNNL-SA-82133. doi:10.1002/pmic.201100436
  • Shi T., T.L. Fillmore, X. Sun, R. Zhao, A.A. Schepmoes, M. Hossain, and F. Xie, et al. 2012. "Antibody-free, targeted mass-spectrometric approach for quantification of proteins at low picogram per milliliter levels in human plasma/serum." Proceedings of the National Academy of Sciences of the United States of America 109, no. 38:15395-15400. PNNL-SA-83776. doi:10.1073/pnas.1204366109
  • Wang L., U.K. Aryal, Z. Dai, A.C. Mason, M.E. Monroe, Z. Tian, and J. Zhou, et al. 2012. "Mapping N-linked Glycosylation Sites in the Secretome and Whole Cells of Aspergillus niger Using Hydrazide Chemistry and Mass Spectrometry." Journal of Proteome Research 11, no. 1:143-56. PNNL-SA-82556. doi:10.1021/pr200916k
  • Waters K.M., T. Liu, R.D. Quesenberry, A.R. Willse, S. Bandyopadhyay, L.E. Kathmann, and T.J. Weber, et al. 2012. "Network Analysis of Epidermal Growth Factor Signaling using Integrated Genomic, Proteomic and Phosphorylation Data." PLoS One 7, no. 3:Article No. e34515. PNNL-SA-85737. doi:10.1371/journal.pone.0034515
  • Zhou J., G.P. Dann, T. Shi, L. Wang, X. Gao, D. Su, and C.D. Nicora, et al. 2012. "Simple Sodium Dodecyl Sulfate-Assisted Sample Preparation Method for LC-MS-based Proteomic Applications." Analytical Chemistry 84, no. 6:2862-2867. PNNL-SA-84751. doi:10.1021/ac203394r

2011

  • Hossain M., D.T. Kaleta, E.W. Robinson, T. Liu, R. Zhao, J.S. Page, and R.T. Kelly, et al. 2011. "Enhanced Sensitivity for Selected Reaction Monitoring-Mass Spectrometry-based Targeted Proteomics using a Dual-Stage Electrodynamic Ion Funnel Interface." Molecular & Cellular Proteomics. MCP 10, no. 2. PNNL-SA-70166. doi:10.1074/mcp.M000062-MCP201
  • Kim J., T.L. Fillmore, T. Liu, E.W. Robinson, M. Hossain, B.L. Champion, and R.J. Moore, et al. 2011. "18O-Labeled Proteome Reference as Global Internal Standards for Targeted Quantification by Selected Reaction Monitoring-Mass Spectrometry." Molecular & Cellular Proteomics. MCP 10, no. 12:Article No. M110.007302. PNNL-SA-77028. doi:10.1074/mcp.M110.007302
  • Schoenherr R.M., K.S. Kelly-Spratt, C. Lin, J.R. Whiteaker, T. Liu, T. Holzman, and I. Coleman, et al. 2011. "Proteome and Transcriptome Profiles of a Her2/Neu-driven Mouse Model of Breast Cancer." Proteomics - Clinical Applications 5, no. 3-4:179-188. PNNL-SA-72407. doi:10.1002/prca.201000037
  • Schutzer S.E., T.E. Angel, T. Liu, A.A. Schepmoes, T.R. Clauss, J.N. Adkins, and D.G. Camp, et al. 2011. "Distinct Cerebrospinal Fluid Proteomes Differentiate Post-Treatment Lyme Disease from Chronic Fatigue Syndrome." PLoS One 6, no. 2:Article No. e17287. PNWD-SA-9128. doi:10.1371/journal.pone.0017287
  • Wang Y., F. Yang, M.A. Gritsenko, Y. Wang, T.R. Clauss, T. Liu, and Y. Shen, et al. 2011. "Reversed-Phase Chromatography with Multiple Fraction Concatenation Strategy for Proteome Profiling of Human MCF10A Cells." Proteomics 11, no. 10:2019-2026. PNNL-SA-75439. doi:10.1002/pmic.201000722
  • Xie F., T. Liu, W. Qian, V.A. Petyuk, and R.D. Smith. 2011. "Liquid Chromatography-Mass Spectrometry-based Quantitative Proteomics." Journal of Biological Chemistry 286, no. 29:25443-25449. PNNL-SA-76123. 
  • Zhang H., K.E. Burnum, M.L. Luna, B.O. Petritis, J. Kim, W. Qian, and R.J. Moore, et al. 2011. "Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size." Proteomics 11, no. 23:4569-4577. PNNL-SA-74159. doi:10.1002/pmic.201100037

2010

  • Schutzer S.E., T. Liu, B. Natelson, T.E. Angel, A.A. Schepmoes, S.O. Purvine, and K.K. Hixson, et al. 2010. "Establishing the Proteome of Normal Human Cerebrospinal Fluid." PLoS One 5, no. 6:e10980-. PNWD-SA-8931. doi:10.1371/journal.pone.0010980
  • Shen Y., N. Tolic, T. Liu, R. Zhao, B.O. Petritis, M.A. Gritsenko, and D.G. Camp, et al. 2010. "Blood Peptidome-Degradome Profile of Breast Cancer." PLoS One 5, no. 10:Article No.: e13133. PNNL-SA-70095. doi:10.1371/journal.pone.0013133
  • Shen Y., T. Liu, N. Tolic, B.O. Petritis, R. Zhao, R.J. Moore, and S.O. Purvine, et al. 2010. "A strategy for degradomic-peptidomic analysis of the human blood plasma." Journal of Proteome Research 9, no. 5:2339-2346. PNNL-SA-71375. doi:10.1021/pr901083m

2009

  • Qian W., T. Liu, V.A. Petyuk, M.A. Gritsenko, B.O. Petritis, A.D. Polpitiya, and A. Kaushal, et al. 2009. "Large-Scale Multiplexed Quantitative Discovery Proteomics Enabled by the Use of an O-18-Labeled “Universal” Reference Sample." Journal of Proteome Research 8, no. 1:290-299. PNNL-SA-57317. 

2008

  • Pertz O.C., Y. Wang, F. Yang, W. Wang, l.J. gay, M.A. Gritsenko, and T.R. Clauss, et al. 2008. "“Spatial Mapping of the Neurite and Soma Proteomes Reveals a Functional Cdc42/Rac Regulatory Network”." Proceedings of the National Academy of Sciences of the United States of America 105, no. 6:1931-1936. PNNL-SA-58516. doi:10.1073/pnas.0706545105
  • Qian W., D.T. Kaleta, B.A. Ogata, H. Jiang, T. Liu, X. Zhang, and H.M. Mottaz, et al. 2008. "Enhanced Detection of Low Abundant Human Plasma Proteins using a Tandem IgY12-SuperMix Immunoaffinity Separation Strategy." Molecular & Cellular Proteomics. MCP 7, no. 10:1963-1973. PNWD-SA-8062. doi:10.1074/mcp.M800008-MCP200
  • Rogers S., M. Girolami, M. Girolami, W. Kolch, K.M. Waters, T. Liu, and B.D. Thrall, et al. 2008. "Investigating the Correspondence Between Transcriptomic and Proteomic Expression Profiles Using Coupled Cluster Models." Bioinformatics 24, no. 24:2894-2900. PNNL-SA-61286. doi:10.1093/bioinformatics/btn553

2007

  • Chan E.Y., W. Qian, D.L. Diamond, T. Liu, M.A. Gritsenko, M.E. Monroe, and D.G. Camp, et al. 2007. "Quantitative analysis of human immunodeficiency virus type 1-infected CD4(+) cell proteome: Dysregulated cell cycle progression and nuclear transport coincide with robust virus production." Journal of Virology 81, no. 14:7571-7583. PNWD-SA-7667. 
  • Liu T., M.E. Belov, N. Jaitly, W. Qian, and R.D. Smith. 2007. "Accurate Mass Measurements in Proteomics." Chemical Reviews 107, no. 8:3621-3653. PNNL-SA-52331. doi:10.1021/cr068288j
  • Liu T., W. Qian, D.G. Camp, and R.D. Smith. 2007. "The Use of a Quantitative Cysteinyl-peptide Enrichment Technology for High-Throughput Quantitative Proteomics." In Quantitative Proteomics by Mass Spectrometry, Methods in Molecular Biology. 107-24. Totowa, New Jersey:Humana Press. PNNL-SA-44833. 
  • Whiteaker J.R., H. Zhang, J.K. Eng, R. Fang, B.D. Piening, L. Feng, and T.D. lorentzen, et al. 2007. "Head-to-Head Comparison of Serum Fractionation Techniques." Journal of Proteome Research 6, no. 2:828-836. PNWD-SA-7568. doi:10.1021/pr0604920

2006

  • Liu T., W. Qian, H.M. Mottaz, M.A. Gritsenko, A.D. Norbeck, R.J. Moore, and S.O. Purvine, et al. 2006. "Evaluation of Multi-Protein Immunoaffinity Subtraction for Plasma Proteomics and Candidate Biomarker Discovery Using Mass Spectrometry." Molecular & Cellular Proteomics. MCP 5, no. 11:2167-2174. PNWD-SA-7363. 
  • Liu T., W. Qian, M.A. Gritsenko, W. Xiao, L.L. Moldawer, A. Kaushal, and M.E. Monroe, et al. 2006. "High Dynamic Range Characterization of the Trauma Patient Plasma Proteome." Molecular & Cellular Proteomics. MCP 5, no. 10:1899-1913. PNWD-SA-7271. doi:10.1074/mcp.M600068-MCP200
  • Qian W., J.M. Jacobs, T. Liu, D.G. Camp, and R.D. Smith. 2006. "Advances and Challenges in Liquid Chromatography-Mass Spectrometry-Based Proteomics Profiling for Clinical Applications." Molecular & Cellular Proteomics. MCP 5, no. 10:1727-1744. PNWD-SA-7399. doi:10.1074/mcp.M600162-MCP200
  • Wang H.H., W. Qian, M.H. Chin, V.A. Petyuk, R.C. Barry, T. Liu, and M.A. Gritsenko, et al. 2006. "Characterization of the Mouse Brain Proteome Using Global Proteomic Analysis Complemented with Cysteinyl-Peptide Enrichment." Journal of Proteome Research 5, no. 2:361-369. PNNL-SA-46752. 

2005

  • Jacobs J.M., J.N. Adkins, W. Qian, T. Liu, Y. Shen, D.G. Camp, and R.D. Smith. 2005. "Utilizing human blood plasma for proteomic biomarker discovery." Journal of Proteome Research 4, no. 4:1073-1085. PNWD-SA-6880. doi:10.1021/pr0500657
  • Liu T., W. Qian, M.A. Gritsenko, D.G. Camp, M.E. Monroe, R.J. Moore, and R.D. Smith. 2005. "Human Plasma N-Glycoproteome Analysis by Immunoaffinity Subtraction, Hydrazide Chemistry, and Mass Spectrometry." Journal of Proteome Research 4, no. 6:2070-2080. PNNL-SA-44967. 
  • Liu T., W. Qian, W.U. Chen, J.M. Jacobs, R.J. Moore, D.J. Anderson, and M.A. Gritsenko, et al. 2005. "Improved Proteome Coverage by Using High Efficiency Cysteinyl-peptide Enrichment: The Human Mammary Epithelial Cell Proteome." Proteomics 5, no. 5:1263-1273. PNNL-SA-42468. 
  • Qian W., M.E. Monroe, T. Liu, J.M. Jacobs, G.A. Anderson, Y. Shen, and R.J. Moore, et al. 2005. "Quantitative Proteome Analysis of Human Plasma Following in vivo Lipopolysaccharide Administration using O-16/O-18 Labeling and the Accurate Mass and Time Tag Approach." Molecular & Cellular Proteomics. MCP 4, no. 5:700-709. PNNL-SA-44302. 
  • Qian W., T. Liu, M.E. Monroe, E.F. Strittmatter, J.M. Jacobs, L.J. Kangas, and K. Petritis, et al. 2005. "Probability-Based Evaluation of Peptide and Protein Identifications from Tandem Mass Spectrometry and SEQUEST Analysis: The Human Proteome." Journal of Proteome Research4, no. 1:53-62. PNNL-SA-42815. 

2004

  • Liu T., W. Qian, E.F. Strittmatter, D.G. Camp, G.A. Anderson, B.D. Thrall, and R.D. Smith. 2004. "High throughput comparative proteome analysis using a quantitative cysteinyl-peptide enrichment technology." Analytical Chemistry 76, no. 18:5345-5353. PNWD-SA-6477.