Physicist
Physicist

Biography

Noah Oblath is an experimental nuclear and particle physicist at Pacific Northwest National Laboratory (PNNL) in the Detection Physics group. His research interests lie in the areas of neutrino properties and dark matter detection. Oblath is a founding member of the Project 8 collaboration, which is developing an experiment to measure the absolute mass of the neutrino using cyclotron radiation emission spectroscopy. He is also a member of the Axion Dark Matter eXperiment collaboration, which aims to detect axion dark matter with microwave cavities. Oblath has technical expertise in data acquisition systems and scientific software development. Before arriving at PNNL in 2016, Oblath worked on the Project 8 and Karlsruhe Tritium Neutrino experiments while at the Massachusetts Institute of Technology, and he completed his PhD at the University of Washington with work on the Sudbury Neutrino Observatory.

Disciplines and Skills

  • C++ Programming
  • Data Acquisition
  • Experimental Physics
  • High-Energy Physics
  • Nuclear Physics
  • Object-Oriented Programming
  • Particle Physics
  • Physics

Education

  • Doctor of Philosophy, Physics, University of Washington
  • Bachelor of Arts, Physics, Cornell University

Publications

2024

  • Oblath, N. S., & VanDevender, B. A. (2024). Cyclotron radiation emission spectroscopy. Annual Review of Nuclear and Particle Science, 74(1), 447–472. https://doi.org/10.1146/annurev-nucl-120523-021323 
  • Ashtari Esfahani A., S. Boser, N.G. Buzinsky, M.C. Carmona-Benitez, C. Claessens, L. De Viveiros, and P.J. Doe, et al. 2024. "Cyclotron Radiation Emission Spectroscopy of Electrons from Tritium Beta Decay and 83mKr Internal Conversion." Physical Review C 109, no. 3:Art. No. 035503. PNNL-SA-182895. doi:10.1103/PhysRevC.109.035503
  • Bartram C., T. Braine, R. Cervantes, N. Crisosto, N. Du, C. Goodman, and M. Guzzetti, et al. 2024. "Nonvirialized Axion Search Sensitive to the Doppler Effects in the Milky Way Halo." Physical Review D 109, no. 8:Art. No. 083014. PNNL-SA-195179. doi:10.1103/PhysRevD.109.083014
  • Ashtari Esfahani A., S. Boser, N.G. Buzinsky, M.C. Carmona-Benitez, R. Cervantes, C. Claessens, and L. De Viveiros, et al. 2024. "Deep Learning Based Event Reconstruction for Cyclotron Radiation Emission Spectroscopy." Machine Learning: Science and Technology 5, no. 2:Art. No. 025026. PNNL-SA-180524. doi:10.1088/2632-2153/ad3ee3
  • Buzinsky N., R. Taylor, W. Byron, W. Degraw, B. Dodson, M. Fertl, and A. Garcia, et al. 2024. "Larmor power limit for cyclotron radiation of relativistic particles in a waveguide." New Journal of Physics 26, no. 8:Art. No. 083021. PNNL-SA-203843. doi:10.1088/1367-2630/ad6d85
  • Boutan C.R., B.H. LaRoque, E.W. Lentz, N.S. Solomon-Oblath, M.S. Taubman, J.R. Tedeschi, and J. Yang, et al. 2024. "Axion Dark Matter eXperiment: Run 1A Analysis Details." Physical Review D 109, no. 1:Art. No. 012009. PNNL-SA-185330. doi:10.1103/PhysRevD.109.012009
  • Chakrabarty S., J.R. Gleason, Y. Han, A.T. Hipp, M. Solano, P. Sikivie, and N.S. Sullivan, et al. 2024. "Low Frequency (100 - 600 MHz) Searches with Axion Cavity Haloscopes." Physical Review D 109, no. 4:Art. No. 042004. PNNL-SA-186229. doi:10.1103/PhysRevD.109.042004

2023

  • Solomon-Oblath N.S., and D.M. Cain. 2023. Developing a Cyclotron Radiation Emission Spectroscopy Detection System. PNNL-35518. Richland, WA: Pacific Northwest National Laboratory.
  • Bartram C., T. Braine, R. Cervantes, N. Crisosto, N. Du, G. Leum, and P. Mohapatra, et al. 2023. "Dark Matter Axion Search Using a Josephson Traveling Wave Parametric Amplifier." Review of Scientific Instruments 94, no. 4:Art. No. 044703. PNNL-SA-168876. doi:10.1063/5.0122907
  • Byron W., H. Harrington, R. Taylor, W. Degraw, N. Buzinsky, B. Dodson, and M. Fertl, et al. 2023. "First observation of cyclotron radiation from MeV-scale e± following nuclear ß decay." Physical Review Letters 131, no. 8:Art. No. 082502. PNNL-33312. doi:10.1103/PhysRevLett.131.082502
  • Ashtari Esfahani A., S. Boser, N.G. Buzinsky, M.C. Carmona-Benitez, C. Claessens, L. De Viveiros, and M. Fertl, et al. 2023. "SYNCA: A Synthetic Cyclotron Antenna for the Project 8 Collaboration." Journal of Instrumentation 18, no. 1:Art. No. P01034. PNNL-SA-179092. doi:10.1088/1748-0221/18/01/P01034
  • Ashtari Esfahani A., S. Boser, N.G. Buzinsky, M.C. Carmona-Benitez, C. Claessens, L. De Viveiros, and P.J. Doe, et al. 2023. "Tritium Beta Spectrum Measurement and Neutrino Mass Limit from Cyclotron Radiation Emission Spectroscopy." Physical Review Letters 131, no. 10:Art. No. 102502. PNNL-SA-180658. doi:10.1103/PhysRevLett.131.102502
  • Kelsey M.H., R. Agnese, Y. Alam, I. Ataee Langroudy, E. Azadbakht, D. Brandt, and R.A. Bunker, et al. 2023. "G4CMP: Condensed Matter Physics Simulation Using the Geant4 Toolkit." Nuclear Instruments and Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1055. PNNL-SA-182030. doi:10.1016/j.nima.2023.168473
  • Nitta T., T. Braine, N. Du, M. Guzzetti, C. Hanretty, G. Leum, and L.J. Rosenberg, et al. 2023. "Search for a Dark-Matter-Induced Cosmic Axion Background with ADMX." Physical Review Letters 131, no. 10:Art. No. 101002. PNNL-SA-185846. doi:10.1103/PhysRevLett.131.101002

2022

  • VanDevender B.A., A.L. Gorham, X. Huyan, C.M. Jackson, S.M. Lyons, N.S. Solomon-Oblath, and S. Sharma Poudel. 2022. Rapid Acceleration of Outcomes in Physics: Final Report for the Nuclear Physics, Particle Physics, Astrophysics, and Cosmology (NPAC) Umbrella Project. PNNL-33439. Richland, WA: Pacific Northwest National Laboratory.
  • Ashtari Esfahani A., Z. Bogorad, S. Boser, N.G. Buzinsky, C. Claessens, L. De Viveiros, and M. Fertl, et al. 2022. "Viterbi Decoding of CRES Signals in Project 8." New Journal of Physics 24, no. 5:Art. No. 053013. PNNL-SA-169354. doi:10.1088/1367-2630/ac66f6
  • Cervantes R., G. Carosi, C. Hanretty, S. Kimes, B.H. LaRoque, G. Leum, and P. Mohapatra, et al. 2022. "Search for 70 ueV Dark Photon Dark Matter with a Dielectrically-Loaded Multi-Wavelength Microwave Cavity." Physical Review Letters 129, no. 20:Art. No. 201301. PNNL-SA-172419. doi:10.1103/PhysRevLett.129.201301
  • Cervantes R., G. Carosi, S. Kimes, C. Hanretty, B.H. LaRoque, G. Leum, and P. Mohapatra, et al. 2022. "ADMX-Orpheus First Search for 70 ueV Dark Photon Dark Matter: Detailed Design, Operations, and Analysis." Physical Review D 106, no. 10:Art. No. 102002. PNNL-SA-172584. doi:10.1103/PhysRevD.106.102002
  • Ashtari Esfahani A., S. Boser, N.G. Buzinsky, M.C. Carmona-Benitez, C. Claessens, L. De Viveiros, and P.J. Doe, et al. 2022. "The Project 8 Neutrino Mass Experiment." arXiv. [Preprint]. Submitted March 14, 2022. PNNL-SA-171585. doi:10.48550/arXiv.2203.07349

2021

  • Khatiwada R., D. Bowring, A.S. Chou, A. Sonnenschein, W. Wester, D.V. Mitchell, and T. Braine, et al. 2021. "Axion Dark Matter eXperiment: Detailed design and operations." Review of Scientific Instruments 92, no. 12:Art. No. 124502. PNNL-SA-154970. doi:10.1063/5.0037857
  • Bartram C., T. Braine, E. Burns, R. Cervantes, N. Crisosto, N. Du, and H. Korandla, et al. 2021. "Search for Invisible Axion Dark Matter in the 3.3–4.2 µeV Mass Range." Physical Review Letters 127, no. 26:Art. No. 261803. PNNL-SA-168945. doi:10.1103/PhysRevLett.127.261803
  • Bartram C., T. Braine, R. Cervantes, N. Crisosto, N. Du, G. Leum, and L. Rosenberg, et al. 2021. "Axion Dark Matter Experiment: Run 1B Analysis Details." Physical Review D 103, no. 3:Article No. 032002. PNNL-SA-157407. doi:10.1103/PhysRevD.103.032002
  • Ashtari Esfahani A., M.O. Betancourt, M.O. Betancourt, Z. Bogorad, S. Boser, N.G. Buzinsky, and R. Cervantes, et al. 2021. "Bayesian Analysis of a Future Beta Decay Experiment’s Sensitivity to Neutrino Mass Scale and Ordering." Physical Review C 103, no. 6:065501. PNNL-SA-161732. doi:10.1103/PhysRevC.103.065501

2020

  • Thomas M., M. Schram, K.M. Fox, J.F. Strube, N.S. Solomon-Oblath, R.J. Rallo Moya, and Z.C. Kennedy, et al. 2020. "Distributed heterogeneous compute infrastructure for the study of additive manufacturing systems." MRS Advances 5, no. 29-30:1547–1555. PNNL-SA-147390. doi:10.1557/adv.2020.103
  • Braine T., R. Cervantes, N. Crisosto, N. Du, S. Kimes, L. Rosenberg, and G.A. Rybka, et al. 2020. "Extended Search for the Invisible Axion with the Axion Dark Matter Experiment." Physical Review Letters 124, no. 10:Article No. 101303. PNNL-SA-151942. doi:10.1103/PhysRevLett.124.101303
  • Ashtari Esfahani A., S. Boser, N.G. Buzinsky, R. Cervantes, C. Claessens, L. De Viveiros, and M. Fertl, et al. 2020. "Cyclotron Radiation Emission Spectroscopy Signal Classification with machine Learning in Project 8." New Journal of Physics 22, no. 3:Article No. 033004. PNNL-SA-146046. doi:10.1088/1367-2630/ab71bd
  • Schram M., M. Thomas, K.M. Fox, B.H. LaRoque, B.A. VanDevender, N.S. Solomon-Oblath, and D.E. Cowley. 2020. "Distributed Computing for the Project 8 Experiment." In 24th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2019). EPJ Web Conference, 245, Paper No. 03030. Paris:EDP Sciences. PNNL-SA-158419. doi:10.1051/epjconf/202024503030
  • Thomas M., M. Schram, K.M. Fox, J.F. Strube, N.S. Solomon-Oblath, R.J. Rallo Moya, and Z.C. Kennedy, et al. 2020. "Distributed heterogeneous compute infrastructure for the study of additive manufacturing systems." MRS Advances 5, no. 29-30:1547–1555. PNNL-SA-147390. doi:10.1557/adv.2020.103
  • Braine T., R. Cervantes, N. Crisosto, N. Du, S. Kimes, L. Rosenberg, and G.A. Rybka, et al. 2020. "Extended Search for the Invisible Axion with the Axion Dark Matter Experiment." Physical Review Letters 124, no. 10:Article No. 101303. PNNL-SA-151942. doi:10.1103/PhysRevLett.124.101303
  • Ashtari Esfahani A., S. Boser, N.G. Buzinsky, R. Cervantes, C. Claessens, L. De Viveiros, and M. Fertl, et al. 2020. "Cyclotron Radiation Emission Spectroscopy Signal Classification with machine Learning in Project 8." New Journal of Physics 22, no. 3:Article No. 033004. PNNL-SA-146046. doi:10.1088/1367-2630/ab71bd
  • Thomas M., M. Schram, K.M. Fox, J.F. Strube, N.S. Solomon-Oblath, R.J. Rallo Moya, and Z.C. Kennedy, et al. 2020. "Distributed heterogeneous compute infrastructure for the study of additive manufacturing systems." MRS Advances 5, no. 29-30:1547-1555. PNNL-SA-150139. doi:10.1557/adv.2020.103

2019

  • Ashtari Esfahani A., V. Bansal, S. Boser, N.G. Buzinsky, R. Cervantes, C. Claessens, and L. de Viveiros, et al. 2019. "Electron Radiated Power in Cyclotron Radiation Emission Spectroscopy Experiments." Physical Review C 99, no. 5:Article No. 055501. PNNL-SA-140989. doi:10.1103/PhysRevC.99.055501
  • Ashtari Esfahani A., S. Boser, N.G. Buzinsky, R. Cervantes, C. Claessens, L. De Viveiros, and M. Fertl, et al. 2019. "Locust: C++ software for simulation of RF detection." New Journal of Physics 21, no. 11:Article No. 113051. PNNL-SA-145576. doi:10.1088/1367-2630/ab550d

2018

  • Boutan C.R., A.M. Jones, B.H. LaRoque, N.S. Solomon-Oblath, R. Cervantes, N. Du, and N. Force, et al. 2018. "Piezoelectrically Tuned, Multimode Cavity Search for Axion Dark Matter." Physical Review Letters 121, no. 26:Article No. 261302. PNNL-SA-137513. doi:10.1103/PhysRevLett.121.261302
  • Du N., N. Force, R. Khatiwada, E. Lentz, R. Ottens, L. Rosenberg, and G. Rybka, et al. 2018. "Search for invisible Axion Dark Matter with the Axion Dark Matter Experiment." Physical Review Letters 120, no. 15:151301. PNNL-SA-131328. doi:10.1103/PhysRevLett.120.151301

2017

  • Ashtari Esfahani A., D.M. Asner, S. Boser, R. Cervantes, C. Claessens, L.A. De Viveiros Souza Filho, and P.J. Doe, et al. 2017. "Determining the Neutrino Mass with Cyclotron Radiation Emission Spectroscopy - Project 8." Journal of Physics G: Nuclear and Particle Physics 44, no. 5:Article No. 054004. PNNL-25965. doi:10.1088/1361-6471/aa5b4f

2015

  • Asner D.M., R. Bradley, L.A. De Viveiros Souza Filho, P.J. Doe, J.L. Fernandes, M. Fertl, and E.C. Finn, et al. 2015. "Single-electron detection and spectroscopy via relativistic cyclotron radiation." Physical Review Letters 114, no. 16:Article No. 162501. PNNL-SA-104834. doi:10.1103/PhysRevLett.114.162501