Earth Scientist
Earth Scientist


Dr. Varble is broadly interested in advancing scientific understanding of cloud processes to improve weather and climate prediction. His work combines observations with high-resolution modeling in novel ways to study complex cloud dynamical and microphysical processes, including interactions between cloud systems, their surrounding environment, and aerosol particles. This improved knowledge is used to improve quantification and prediction of cloud radiative effects and precipitation within the climate system. A particular focus is improving representation of convective cloud systems in models using a wide variety of both long term and field experiment in situ and remote sensing measurements. He was principal investigator of the Cloud, Aerosol, and Complex Terrain Interactions field campaign and has been a member of several additional field campaign science teams.

Research Interest

  • Cloud dynamics and microphysics
  • Radar and satellite remote sensing
  • Mesoscale and large-eddy simulations
  • Field campaign design and operation
  • Life cycle and organization of convective clouds
  • Interactions between clouds, aerosols, and the surrounding environment


  • PhD in Atmospheric Sciences, University of Utah
  • BS in Atmospheric and Oceanic Sciences, University of Wisconsin-Madison

Affiliations and Professional Service

  • Volunteer Faculty, Department of Atmospheric Sciences, University of Utah
  • Co-chair, Department of Energy Atmospheric System Research Convective Processes Working Group
  • Member, User Executive Committee, Department of Energy Atmospheric Radition Measurement user facility
  • Associate Editor, Journal of Atmospheric Sciences
  • Associate Editor, Monthly Weather Review
  • Member, American Geophysical Union
  • Member, American Meteorological Society



  • Veals, P., A. C. Varble, J. O. H. Russell, J. C. Hardin, and E. J. Zipser (2022), A Decrease in the Depth of Deep Convective Cores with Increasing Aerosol Concentration During the CACTI Campaign. J. Atmos. Sci., doi:10.1175/JAS-D-21-0119.1.


  • Varble, A. C., S. W. Nesbitt, P. Salio, J. C. Hardin, N. Bharadwaj, P. Borque, P. J. DeMott, Z. Feng, T. C. J. Hill, J. N. Marquis, A. Matthews, F. Mei, R. Oktem, V. Castro, L. Goldberger, A. Hunzinger, K. R. Barry, S. M. Kreidenweis, G. M. McFarquhar, L. A. McMurdie, M. Pekour, H. Powers, D. M. Romps, C. Saulo, B. Schmid, J. M. Tomlinson, S. C. van den Heever, A. Zelenyuk, Z. Zhang, and E. J. Zipser (2021), Utilizing a Storm-Generating Hotspot to Study Convective Cloud Transitions: The CACTI Experiment. BAMS, 102, E1597-E1620, doi:10.1175/BAMS-D-20-0030.1.
  • Marquis J. N., A. C. Varble, P. Robinson, T. C. Nelson, and K. Friedrich, (2021), Low-level Mesoscale and Cloud-scale Interactions Promoting Deep Convective Initiation. Mon. Wea. Rev., 149, 2473-2495, doi:10.1175/MWR-D-20-0391.1.
  • Nelson T. C., J. Marquis, A. Varble, and K. Friedrich (2021), Radiosonde Observations of Environments Supporting Deep Moist Convection Initiation during RELAMPAGO-CACTI. Mon. Wea. Rev., 149, 289–309. doi:10.1175/MWR-D-20-0148.1.
  • Nesbitt S. W., P. V. Salio, E. Ávila, P. Bitzer, L. Carey, V. Chandrasekar, W. Deierling, F. Dominguez, M. E. Dillon, C. M. Garcia, D. Gochis, S. Goodman, D. A. Hence, K. A. Kosiba, M. R. Kumjian, T. Lang, J. Marquis, R. Marshall, L. A. McMurdie, E. L. Nascimento, K. L. Rasmussen, R. Roberts, A. K. Rowe, J. J. Ruiz, E. F. M. T. São Sabbas, A. C. Saulo, R. S. Schumacher, Y. G. Skabar, L. A. T. Machado, R. J. Trapp, A. C. Varble, J. Wilson, J. Wurman, E. J. Zipser, I. Arias, H. Bechis, and M. A. Grover (2021), A Storm Safari in Subtropical South America: Proyecto RELAMPAGO. BAMS, 102, E1621-E1644, doi:10.1175/BAMS-D-20-0029.1.
  • Rivelli Zea, L., S. W. Nesbitt, A. Ladino, J. C. Hardin, and A. C. Varble (2021), Raindrop Size Spectrum in Deep Convective Regions of the Americas. Atmosphere, 12, 979, doi:10.3390/atmos12080979.
  • Schumacher, R. S., D. A. Hence, S. W. Nesbitt, R. J. Trapp, K. A. Kosiba, J. Wurman, P. Salio, M. Rugna, A. Varble, and N. R. Kelly (2021), Convective-storm environments in subtropical South America from high-frequency soundings during RELAMPAGO-CACTI, Mon. Wea. Rev., 149, 1439-1458, doi:10.1175/MWR-D-20-0293.1.
  • Zhang, Z., A. C. Varble, Z. Feng, J. C. Hardin, and E. J. Zipser (2021), Growth of Mesoscale Convective Systems in Observation and a Seasonal Convection-Permitting Simulation over Argentina. Mon. Wea. Rev., 149, 3469-3490, doi:10.1175/MWR-D-20-0411.1.


  • Varble, A., H. Morrison, and E. Zipser (2020), Effects of under-resolved convective dynamics on the evolution of a squall line. Mon. Wea. Rev., 148, 289-311, doi:10.1175/MWR-D-19-0187.1.
  • Hunzinger, A., J. C. Hardin, N. Bharadwaj, A. Varble, and A. Matthews (2020), An Extended Radar Relative Calibration Adjustment (eRCA) Technique for Higher Frequency Radars and RHI Scans. Atmos. Meas. Tech., 13, 3147-3166, doi:10.5194/amt-13-3147-2020.
  • Morrison H., J. M. Peters, A. C. Varble, W. M. Hannah, and S. E. Giangrande (2020), Thermal Chains and Entrainment in Cumulus Updrafts, Part 1: Theoretical Description. J. Atmos. Sci., 77, 3637–3660, doi:10.1175/JAS-D-19-0243.1.
  • Peters J. M., H. Morrison, A. C. Varble, W. M. Hannah, and S. E. Giangrande (2020), Thermal Chains and Entrainment in Cumulus Updrafts, Part 2: Analysis of Idealized Simulations. J. Atmos. Sci., 77, 3661–3681, doi:10.1175/JAS-D-19-0244.1.
  • Stanford M. W., H. Morrison, and A. Varble (2020), Impacts of Stochastic Mixing in Idealized Convection-Permitting Simulations of Squall Lines. Mon. Wea. Rev., 148, 4971–4994, doi:10.1175/MWR-D-20-0135.1.


  • Han, B., J. Fan, A. Varble, and coauthors (2019), Cloud-resolving model intercomparison of an MC3E squall line case: Part II – Stratiform precipitation properties.  J. Geophys. Res., 124, 1090-1117, doi:10.1029/2018JD029596.
  • Stanford, M., A. Varble, and coauthors (2019), Sensitivity of simulated deep convection to a stochastic ice microphysics framework. J. Adv. Model. Earth Sys., 11, 3362-3389, doi:10.1029/2019MS001730.


  • Varble, A. (2018), Erroneous attribution of deep convective invigoration to aerosol concentration. J. Atmos. Sci., 75, 1351-1368, doi:10.1175/JAS-D-17-0217.1.
  • Gingrey, A., A. Varble, and E. Zipser (2018), Relationships between extreme rain rates and convective intensities from the perspective of TRMM and WSR-88D radars. J. Appl. Meteor. Climatol., 57, 1353-1369, doi:10.1175/JAMC-D-17-0240.1.


  • Fan, J., B. Han, A. Varble, H. Morrison, and coauthors (2017), Cloud-resolving model intercomparison of a MC3E squall line case: Part I – Convective updrafts. J. Geophys. Res., 122, 9351-9378, doi:10.1002/2017JD026622.
  • Lebo, Z. J., B. J. Shipway, J. Fan, I. Geresdi, A. Hill, A. Miltenberger, H. Morrison, P. Rosenberg, A. Varble, and L. Xue (2017), Challenges for cloud modeling in the context of aerosol-cloud-precipitation interactions. Bull. Amer. Meteorol. Soc., 98, 1749-1755, doi:10.1175/BAMS-D-16-0291.1.
  • Stanford, M. W., A. Varble, E. Zipser, J. W. Strapp, D. Leroy, A. Schwarzenboeck, R. Potts, and A. Protat (2017), A ubiquitous ice size bias in simulations of tropical deep convection. Atmos. Chem. Phys., 17, 9599-9621, doi:10.5194/acp-17-9599-2017.


  • Varble, A., E. J. Zipser, A. M. Fridlind, P. Zhu, A. S. Ackerman, J.-P. Chaboureau, S. Collis, J. Fan, A. Hill, and B. Shipway. (2014), Evaluation of cloud-resolving and limited area model intercomparison simulations using TWP-ICE observations: 1. Deep convective updraft properties.  J. Geophys. Res., 119, 13,891-13,918, doi:10.1002/2013JD021371.
  • Varble, A., E. J. Zipser, A. M. Fridlind, P. Zhu, A. S. Ackerman, J.-P. Chaboureau, J. Fan, A. Hill, B. Shipway, and C. R. Williams (2014), Evaluation of cloud-resolving and limited area model intercomparison simulations using TWP-ICE observations: 2. Precipitation microphysics.  J. Geophys. Res., 119, 13,919-13,945, doi:10.1002/2013JD021372.


  • Fridlind, A. M., A. S. Ackerman, J.-P. Chaboureau, J. Fan, W. W. Grabowski, A. Hill, T. R. Jones, G. Liu, H. Morrison, S. Park, J. C. Petch, J.-P. Pinty, C. Schumacher, A. C. Varble, X. Wu, S. Xie, and M. Zhang (2012), A comparison of TWP-ICE observational data with cloud-resolving model results.  J. Geophys. Res., 117, D05204, doi:10.1029/2011JD016595.
  • Mrowiec, A. A., C. Rio, A. M. Fridlind, A. S. Ackerman, A. D. Del Genio, O. M. Pauluis, A. C. Varble, and J. Fan (2012), Analysis of cloud-resolving simulations of a tropical mesoscale convective system observed during TWP-ICE: Vertical fluxes and draft properties in convective and stratiform regions.  J. Geophys. Res., 117, D19201, doi:10.1029/2012JD017759.
  • Zhu, P., J. Dudhia, P. R. Field, K. Wapler, A. Fridlind, A. Varble, M. Chen, J. Petch, Z. Zhu, and E. Zipser (2012), A limited area model (LAM) intercomparison study of a TWP-ICE active monsoon mesoscale convective event.  J. Geophys. Res., 117, D11208, doi:10.1029/2011JD016447.


  • Varble, A., A. M. Fridlind, E. J. Zipser, A. S. Ackerman, J.-P. Chaboureau, J. Fan, A. Hill, S. A. McFarlane, J.-P. Pinty, and B. Shipway (2011), Evaluation of cloud-resolving model intercomparison simulations using TWP-ICE observations: Precipitation and cloud structure.  J. Geophys. Res., 116, D12206, doi:10.1029/2010JD015180.