Researchers measured ice nucleating particles composition at the Southern Great Plains atmospheric observatory, enabling them to identify sources of particles that make them effective ice nucleators.
To improve our ability to “see” into the subsurface, scientists need to understand how different mineral surfaces respond to electrical signals at the molecular scale.
The surface oxygen functionality of graphene oxide may be tuned using ultraviolet light, affecting how differently charged ions move through the material.
Recycling polyolefin materials is challenging. One waste management strategy is plastic upcycling. New work demonstrates a single-step upcycling route coupling cracking and alkylation, recycling carbon and keeping valuable resources active.
PNNL staff scientist selected as a guest editor for a special issue titled “Ligand-Metal Complementarity in Rare Earth and Actinide Chemistry,” in the well-known journal Inorganic Chemistry.
Using a refined Earth system model, researchers found that wetlands over North America will be significantly affected by climate change under future scenarios
Researchers use dataset combining observational data with advanced numerical simulations to investigate the characteristics, drivers, and trends of extreme heat events in the High Arctic over past four decades
Researchers develop framework that tracks the aerosol–cloud interactions along the trajectories of air parcels and embed framework into Weather Research Forecast model.
Study develops high-resolution land surface data for 2001 to 2020, including parameters of land use, vegetation, soil, and topography and demonstrated its use in k-scale simulation using the Energy Exascale Earth System Model.
A new study examines the effect of peptoid sequences on the mechanisms and kinetics of their two-dimensional assembly on mica surfaces and how molecular interactions alter assembly kinetics.
Researchers show how satellite observations from the MODerate Resolution Imaging Spectroradiometer and CloudSat radar can be used to constrain the ACI radiative forcing that is linked to droplet collection in marine liquid clouds.
Researchers provide clear evidence to show that the fourfold Arctic Amplification over recent decades is an anomaly caused by dominant modes of natural variability.
Once thought to cover too little of the Earth’s surface to affect climate at larger scales, new work finds that city sprawl does add to global warming—over land, at least.
Researchers synthesize molecular-level laboratory experiments to develop comprehensive model representations of new particle formation and the chemical transformation of precursor gases.
Researchers show application of a causal model better identifies direct and indirect causal relations compared to correlation and random forest analyses performed over the same dataset.
A new study demonstrates a hybrid model that can simulate part of a system at the molecular scale and other parts at larger scales in a computationally efficient manner, providing greater simulation flexibility.