A switchable single-atom catalyst is activated in the presence of surface intermediates and reverts to its stable inactive form when the reaction is completed.
In a recent publication in Nature Communications, a team of researchers presents a mathematical theory to address the challenge of barren plateaus in quantum machine learning.
To improve our ability to “see” into the subsurface, scientists need to understand how different mineral surfaces respond to electrical signals at the molecular scale.
The surface oxygen functionality of graphene oxide may be tuned using ultraviolet light, affecting how differently charged ions move through the material.
A new study examines the effect of peptoid sequences on the mechanisms and kinetics of their two-dimensional assembly on mica surfaces and how molecular interactions alter assembly kinetics.
The Department of Energy Office of Nuclear Energy acting assistant secretary makes his first visit to a national laboratory in his new role, touring PNNL's Radiochemical Processing Laboratory.
Research at PNNL and the University of Texas at El Paso are addressing computational challenges of thinking beyond the list and developing bioagent-agnostic signatures to assess threats.
Two decades of advances have provided a clearer picture of the mechanisms of crystal assembly. This review highlights key breakthroughs in crystallization pathways of both soft and organic materials, emphasizing future research directions.
Twinned nanocrystals have unique physical and chemical properties, a variety of which are detailed by a new study. These findings can help guide future efforts in controlling twinning and detwinning in gold nanoparticles.