A new study examines the effect of peptoid sequences on the mechanisms and kinetics of their two-dimensional assembly on mica surfaces and how molecular interactions alter assembly kinetics.
The Department of Energy Office of Nuclear Energy acting assistant secretary makes his first visit to a national laboratory in his new role, touring PNNL's Radiochemical Processing Laboratory.
At the second Grid Resilience to Extreme Events Summit, a diverse range of experts gathered to tackle the biggest challenges in building a resilient grid.
Two decades of advances have provided a clearer picture of the mechanisms of crystal assembly. This review highlights key breakthroughs in crystallization pathways of both soft and organic materials, emphasizing future research directions.
Twinned nanocrystals have unique physical and chemical properties, a variety of which are detailed by a new study. These findings can help guide future efforts in controlling twinning and detwinning in gold nanoparticles.
PNNL computing experts Robert Rallo and Court Corley contribute their knowledge to a recent DOE report on applications of AI to energy, materials, and the power grid.
Tennessee State University received Department of Energy funding to establish an academy focused on preparing students and professionals to work in an emerging field: clean energy systems. PNNL is helping with that effort and others.
PNNL advisors joined a panel of Washington State emergency management personnel to discuss how partnerships with national laboratories are enabling science and technology solutions.
The world is becoming reliant on increasingly smaller sensors that improve daily life in many ways. A PNNL-led paper takes a closer look at these technologies and their future development for environmental and sensitive species monitoring.
Researchers investigated how stable nanoparticle suspensions form using facet engineering on hematite nanoparticles, demonstrating that controlling the faceting of nanoparticles can effectively maintain particle dispersity.