Despite an increase in future electricity demands, virtual water trading in the U.S. electricity sector is expected to decline as renewable energy expands.
Additional fire-favorable weather associated with declines in Arctic sea ice during summer can increase autumn wildfires over the western United States.
A new study demonstrates how researchers can model human–Earth system feedbacks in a single internally consistent, computationally efficient framework.
Model results show that uncertainties in farmers’ expectations of market and weather conditions amplify agricultural supply and demand variability under a changing climate.
Investigating the soil moisture–precipitation feedbacks that are associated with mesoscale convective system and non-mesoscale convective system rainfall.
Researchers found that increasing restrictions on nonrenewable groundwater use for irrigation shifts agricultural production from western states to the east.
Developing a new approach for defining energy-water-agriculture linkages highlights U.S. regions where focusing on individual sectors may miss cross-sectoral impacts.
Simulations accurately predicted storm cloud shield timing and growth, but not rain intensities, for over 300 tracked storm complexes in a storm-generating hotspot in Argentina.
Four factors, the El Niño-Southern Oscillation, North Atlantic subtropical high, low-level jet, and water vapor transport from Gulf of Mexico, primarily influence hail occurrence in the Northern Great Plains