Abstract
Existing quality control methods for data collected using mass spectrometry primarily focus on post-hoc analysis to remove low-quality data that would degrade downstream statistics; they are not designed to evaluate the data in near real-time, which would allow for interventions as soon as deviations in data quality are detected. In addition to flagging analyses that demonstrate outlier behavior, evaluating how the data structure changes over time can aide in understanding typical instrument performance or identify issues such as a degradation in data quality due to the need for instrument cleaning and/or re-calibration. To address this gap for proteomics, we developed Quality Control Analysis in Real-Time (QC-ART), a tool for evaluating data as they are acquired in order to dynamically flag potential issues with instrument performance or sample quality. QC-ART has similar accuracy as standard post-hoc analysis methods with the additional benefit of real-time analysis.
Exploratory License
Eligible for exploratory license
Market Sector
Biological Sciences and Omics