Capturing CO2 from the exhaust of coal-fired power plants is a daunting task, requiring selective removal from a dilute gas stream of millions of pounds per hour of a molecule that is considered thermodynamically and kinetically stable. There are commercial solvent technologies containing proprietary blends of aqueous amines such as Econamine FG+, KS-1, Oase® Blue, and Cansolv that may achieve this task, though only one of them has been deployed at scale, albeit in the natural gas industry.1 The Achilles’ heel of amine blends is the energy loss involved with regenerating the solvent, i.e., boiling and condensing millions of pounds of water per hour. This energy loss translates to a sizeable parasitic load on a coal-fired plant, requiring the plant to burn more coal to get back to its nameplate capacity.2 Unsurprisingly, a considerable amount of research has focused on the design of more efficient technologies to lessen this parasitic load. Liquid systems are the lowest hanging fruit from a time and cost perspective, as they have the potential to use aqueous amine infrastructure, with potential for more rapid ascent up the development ladder than porous solids or membranes.
Revised: October 31, 2017 |
Published: June 19, 2017
Citation
Heldebrant D.J., P.K. Koech, V. Glezakou, R.J. Rousseau, D. Malhotra, and D. Cantu Cantu. 2017.Water-Lean Solvents for Post-Combustion CO2 Capture: Fundamentals, Uncertainties, Opportunities and Outlook.Chemical Reviews 117, no. 14:9594-9624.PNNL-SA-122499.doi:10.1021/acs.chemrev.6b00768