We report the synthesis and characterization of 2-(3-(adamantan-1-yl)propyl)-3,5,6-trifluoro-7,7,8,8-tetracyanoquinodimethane (F3TCNQ-Ad1), a substituted analog of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), designed for p-type conductivity doping. The dopant is designed as a model for substituted alternatives to F4TCNQ that maintain similar electronic properties with the goal of engineering dopants with superior fabrication characteristics over F4TCNQ. We describe the design strategy for F3TCNQ-Ad1 based on molecular modeling predictions that substitution of a single fluorine atom of F4TCNQ has little effect on the electronic properties of the molecule. Photophysical and electrochemical characterization reveal that the adamantyl substituent in F3TCNQ-Ad1 does not significantly alter the electronic properties of the substituted dopant relative to F4TCNQ. Unfortunately, F3TCNQ-Ad1 degrades under standard sublimation conditions, preventing sublimation deposition processing. Instead, hole-only devices were made via solution-processing of the p-doped films with the structure glass/ITO/2.3 x103Å PVK:(MTDATA:dopant)/2.0x102Å Au/1.0x103Å Al, where dopant is either F4TCNQ or F3TCNQ-Ad1. We demonstrate that F3TCNQ-Ad1 increased the conductivity of the films by at least 1,000 times compared to an undoped device.
Revised: April 8, 2013 |
Published: January 22, 2013
Citation
Rainbolt J.E., P.K. Koech, E. Polikarpov, J.S. Swensen, L. Cosimbescu, A.L. Von Ruden, and L. Wang, et al. 2013.Synthesis and characterization of p-type conductivity dopant 2-(3-(adamantan-1-yl)propyl)-3,5,6-trifluoro-7,7,8,8-tetracyanoquinodimethane.Journal of Materials Chemistry C 1, no. 9:1876 - 1884.PNNL-SA-77092.doi:10.1039/C3TC00068K