January 8, 2016
Journal Article

Stabilization of Softwood-Derived Pyrolysis Oils for Continuous Bio-oil Hydroprocessing

Abstract

The use of fast pyrolysis as a potential renewable liquid transportation fuel alternative to crude oil depends on successful catalytic upgrading to produce a refinery-ready product with oxygen content and qualities (i.e. specific functional group or compound content) that is compatible with the product’s proposed insertion point. Catalytic upgrading of bio-oil requires high temperature and pressure, while similar to crude oil hydrotreating, is not as straightforward for the thermally unstable pyrolysis oil. For years, a two-temperature zone, downflow trickle bed reactor was the state-of-the art for continuous operation. However, pressure excursion due to plug formation still occurred, typically at the high temperature transition zone, leading to a process shutdown within 140 h. Recently, a bio-oil pre-treatment process, together with a robust commercial catalyst, was found to be enabling the continuous operation of the two-zone hydroprocessing system. Here, we report the results on pre-treating bio-oil at 413 K and 8.4 MPa of flowing H2 (500 L H2/L bio-oil, 0.5 L bio-oil/L catalyst bed) and the attempts to characterize this oil product to understand the chemistry which enabled the long-term processing of bio-oil.

Revised: May 4, 2016 | Published: January 8, 2016

Citation

Olarte M.V., A.H. Zacher, A.B. Padmaperuma, S.D. Burton, H.M. Job, T.L. Lemmon, and M.S. Swita, et al. 2016. Stabilization of Softwood-Derived Pyrolysis Oils for Continuous Bio-oil Hydroprocessing. Topics in Catalysis 59, no. 1:55-64. PNNL-SA-111135. doi:10.1007/s11244-015-0505-7