Characterization of endogenous metabolites and xenobiotics is essential to deconvoluting the genetic and environmental causes of disease. However, surveillance of chemical exposure and disease-related changes in large cohorts requires an analytical platform that offers rapid measurement, high sensitivity, efficient separation, broad dynamic range, and application to an expansive chemical space. Here, we present a novel platform for small molecule analyses that addresses these requirements by combining solidphase extraction with ion mobility spectrometry and mass spectrometry (SPE-IMS-MS). This platform is capable of performing both targeted and global measurements of endogenous metabolites and xenobiotics in human biofluids with high reproducibility (CV 6 3%), sensitivity (LODs in the pM range in biofluids) and throughput (10-s sample-to-sample duty cycle). We report application of this platform to the analysis of human urine from patients with and without type 1 diabetes, where we observed statisticallysignificant variations in the concentration of disaccharides and previously unreported chemical isomers.This SPE-IMS-MS platform overcomes many of the current challenges of large-scale metabolomic and exposomic analyses and offers a viable option for population and patient cohort screening in an effort to gain insights into disease processes and human environmental chemical exposure.
Revised: June 12, 2020 |
Published: December 29, 2016
Citation
Zhang X., M.V. Romm, X. Zheng, E.M. Zink, Y. Kim, K.E. Burnum-Johnson, and D.J. Orton, et al. 2016.SPE-IMS-MS: An automated platform for sub-sixty second surveillance of endogenous metabolites and xenobiotics in bio?uids.Clinical Mass Spectrometry 2.PNNL-SA-117436.doi:10.1016/j.clinms.2016.11.002