December 16, 2020
Conference Paper

Spatiotemporal Pattern Recognition in the PMU Signals in the WECC system

Abstract

Phasor measurement unit (PMU) data has been used by multiple power system applications, including state estimation, post event analysis, oscillation detection, model validation, and many others. Still, due to its big data nature and availability to general research institutions, comprehensive understanding of the spatiotemporal patterns and underlying mechanisms are incomplete. This study applies a set of signal processing and machine learning approaches aiming at deciphering the characteristic behaviors of multiple phasor measurement units (PMUs) attributes (e.g., voltage, frequency, rate of change of frequency, phase angle), including their auto-correlation, cross-dependence, similarities and discrepancies across units and temporal scales, and distributions of anomalies and their linkages to potential external factors such as weather events. Data analytics are applied to PMUs from the U.S. Western Electricity Coordinating Council (WECC) system. The PMU measurements, recorded events, outages, and weather extremes are all from real world datasets. The findings from the study and mechanistic understanding of the PMU dynamics help provide guidance on system control or preventing blackouts. The derived metrics can be directly used for adjusting or filtering simulated PMU data used for advanced algorithm development.

Revised: February 12, 2021 | Published: December 16, 2020

Citation

Hou Z., H. Ren, H. Wang, and P.V. Etingov. 2020. "Spatiotemporal Pattern Recognition in the PMU Signals in the WECC system." In IEEE Power & Energy Society General Meeting (PESGM 2020), August 2-6, 2020, Montreal, Canada, 1-5. Piscataway, New Jersey:IEEE. PNNL-SA-149280. doi:10.1109/PESGM41954.2020.9281440

Research topics