Fish passage conditions over a modified deflector in Spillbay 20 at John Day Dam were evaluated by Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers (USACE), Portland District, using Sensor Fish devices. The objectives of the study were to describe and compare passage exposure conditions at two spill discharges, 2.4 and 4.0 thousand cubic feet per second (kcfs), identifying potential fish injury regions within the routes, and to evaluate a low-tailwater condition at the 2.4-kcfs discharge. The study was performed in April 2010 concurrent with HI-Z balloon-tag studies by Normandeau Associates, Inc. Sensor Fish data were analyzed to estimate 1) exposure conditions, particularly exposure to severe collision and shear events; 2) differences in passage conditions between treatments; and 3) relationships to live-fish injury and mortality data estimates. Nearly all Sensor Fish significant events were classified as collisions; the most severe occurred at the gate, on the spillbay chute, or at the deflector transition. Collisions in the gate region were observed only during the 2.4-kcfs discharge, when the tainter gate was open 1.2 ft. One shear event was observed during the evaluation, occurring at the deflector transition during passage at the 2.4-kcfs discharge at low tailwater. Flow quality, computed using the Sensor Fish turbulence index, was best for passage at the low-flow low-tailwater condition as well. The worst flow quality was observed for the 4.0-kcfs test condition. Contrasting the passage exposure conditions, the 2.4-kcfs low-tailwater treatment would be most deleterious to fish survival and well-being.