January 9, 2017
Journal Article

Quantitative Characterization of Aqueous Byproducts from Hydrothermal Liquefaction of Municipal Wastes, Food Industry Wastes, and Biomass Grown on Waste

Abstract

Hydrothermal liquefaction (HTL) is a viable thermochemical process for converting wet solid wastes into biocrude which can be hydroprocessed to liquid transportation fuel blendstocks and specialty chemicals. The aqueous byproduct from HTL contains significant amounts (20 to 50%) of the feed carbon, which must be used to enhance economic sustainability of the process on an industrial scale. In this study, aqueous fractions produced from HTL of industrial and municipal waste were characterized using a wide variety of analytical approaches. Organic chemical compounds present in these aqueous fractions were identified using two-dimensional gas chromatography equipped with time-of-flight mass spectrometry. Identified compounds include organic acids, nitrogen compounds, alcohols, aldehydes, and ketones. Conventional gas chromatography and liquid chromatography methods were employed to quantify the identified compounds. Inorganic species, in the aqueous stream of hydrothermal liquefaction of these aqueous byproducts, also were quantified using ion chromatography and inductively coupled plasma optical emission spectroscopy. The concentrations of organic chemical compounds and inorganic species are reported, and the significance of these results is discussed in detail.

Revised: April 25, 2017 | Published: January 9, 2017

Citation

Maddi B., E.A. Panisko, T.W. Wietsma, T.L. Lemmon, M.S. Swita, K.O. Albrecht, and D.T. Howe. 2017. Quantitative Characterization of Aqueous Byproducts from Hydrothermal Liquefaction of Municipal Wastes, Food Industry Wastes, and Biomass Grown on Waste. ACS Sustainable Chemistry & Engineering 5, no. 3:2205-2214. PNNL-SA-121413. doi:10.1021/acssuschemeng.6b02367