This study investigates multiscale atmospheric overturning during the 2009 Indian summer monsoon (ISM) using a cloud-permitting numerical model. The isentropic analysis technique adopted here sorts vertical mass fluxes in terms of the equivalent potential temperature of air parcels, which is capable of delineating the atmospheric overturning between ascending air parcels with high entropy and subsiding air parcels with low entropy. The monsoonal overturning is further decomposed into contributions from three characteristic scales: the planetary-scale updraft over the whole Indian monsoon basin, the regional-scale overturning associated with synoptic and mesoscale systems, and the convective-scale overturning. Results show that the convective-scale component dominates the upward mass transport in the lower troposphere while the region-scale component plays an important role by allowing a deeper monsoonal overturning. The spatial variability of the convective-scale overturning is analyzed, showing intense convection over the Western Ghats and the Bay of Bengal while the deepest overturning is localized over Northern India and the Himalayan foothills. The equivalent potential temperature in convective updrafts is higher over land than over the ocean or coastal regions. There is also substantial variability in the atmospheric overturning associated with the intraseasonal variability. The upward mass and energy transport increases considerably during the active phases of the ISM. A clear northeastward propagation in the peak isentropic vertical mass and energy transport over different characteristic regions can be found during the ISM, which corresponds to the intraseasonal oscillations of the ISM. Altogether, this study further demonstrates the utility of the isentropic analysis technique to characterize the spatiotemporal variations of convective activities in complex atmospheric flows.
Revised: September 30, 2020 |
Published: September 28, 2018
Citation
Chen X., O. Pauluis, L. Leung, and F. Zhang. 2018.Multiscale Atmospheric Overturning of Indian Summer Monsoon as Seen through Isentropic Analysis.Journal of the Atmospheric Sciences 75, no. 9:3011-3030.PNNL-SA-132704.doi:10.1175/JAS-D-18-0068.1