Post combustion carbon capture by solvent absorption in a structured packed column has received much attention as a promising technology to mitigate greenhouse gas emissions. Because of the wide range in length and time scales, computational fluid dynamics (CFD) modelling of such column is a challenging multiscale problem. The microscale hydrodynamics play a key role in the overall column efficiency with the interfacial area significantly influencing the mass transfer between gas and liquid phases. In this context, multiphase flow simulations using the volume of fluid (VOF) method in a representative elementary unit (REU) of the packed column can provide fundamental insights into the microscale hydrodynamics, such as, interfacial area and liquid holdup. The present study systematically examines the impact of various factors (e.g., physical properties and contact angle) on the interfacial area. The results are compared with existing correlations and a scaling analysis is also performed. The solvent physical properties are characterized by the Kapitza number (Ka), a dimensionless number that depends only on fluid properties. The Ka number decreases with increasing viscosity. At a fixed liquid load, the interfacial area and liquid holdup are observed to increase with decreasing Ka number. The impact of contact angle (i.e., solid surface characteristics) was effectively investigated by modifying the wall boundary conditions. The interfacial area and liquid holdup were found to decrease with increasing contact angle. Subsequently, a phenomenological correlation for interfacial area is proposed that includes the impact of these parameters. This correlation may be used to predict the interfacial area for gas-liquid flow in a structured packing for rivulet to fully wetted flow regimes.
Revised: December 20, 2018 |
Published: December 1, 2018
Citation
Singh R.K., J. Galvin, and X. Sun. 2018.Multiphase flow studies for microscale hydrodynamics in the structured packed column.Chemical Engineering Journal 353.PNNL-SA-132858.doi:10.1016/j.cej.2018.07.067