The adsorption of a corrosive gas, SO¬2, into microporous pillared paddle-wheel frameworks M(bdc)(ted)0.5 [M = Ni, , Zn; bdc = 1,4-benzenedicarboxylate; ted=triethylenediamine] is studied by volumetric adsorption measurements and a combination of in-situ infrared spectroscopy and ab initio density functional theory (DFT) calculations. The uptake of SO2 in M(bdc)(ted)0.5 at room temperature is quite significant, 9.966 mol kg-1(63.8%) at room temperature/1.132 bar, which represents the highest SO2 uptake so far observed. Two different adsorption species are identified by infrared spectroscopy: one is typical physisorbed SO2 species, charac-terized by a modest red shift of S-O stretching bands (36 cm-1 for ?as and 7 cm-1 for ?s); the other characterized by adsorption bands at 1242 and 1105cm-1 and by a much higher (~150°C) temperature to completely remove. Theoretical calculations including van der Waals interactions (based on vdW-DF) indicate that the adsorption geometry of SO2 involves one molecule bonding of its sulfur atom to the oxygen atom of the paddle-wheel building unit and its two oxygen atoms to the C-H groups of the organic linkers by formation of hydrogen bonds. Such a configuration results in a large distortion of benzene rings, which is consistent with the experimentally observed shift of the ring deformation mode. The simulated frequency shift of the SO2 stretching bands by vdW-DF is in excellent agreement with spectroscopically measured value of physisorbed SO2. The IR absorptions at 1242 and 1105 cm-1 also suggest a stronger adsorption configuration, previously observed in SO4-like species involving two oxygen atoms of the paddle wheel building units. The adsorption configurations of SO2 into M(bdc)(ted)0.5 derived by infrared spectroscopy and vdW-DF calculations provide the understanding necessary to develop industrial processes for SO2 removal using microporous paddle-wheel frameworks materials.
Revised: April 29, 2014 |
Published: December 2, 2013
Citation
Tan K., P. Canepa, Q. Gong, J. Liu, D.H. Johnson, A.A. Dyevoich, and P.K. Thallapally, et al. 2013.Mechanism of Preferential Adsorption of SO2 into Two Microporous Paddle Wheel Frameworks M(bdc)(ted)(0.5).Chemistry of Materials 25, no. 23:4653-4662.PNNL-SA-93017.doi:10.1021/cm401270b