January 24, 2013
Journal Article

Identification of widespread adenosine nucleotide binding in Mycobacterium tuberculosis

Abstract

The annotation of protein function is almost completely performed by in silico approaches. However, computational prediction of protein function is frequently incomplete and error prone. In Mycobacterium tuberculosis (Mtb), ~25% of all genes have no predicted function and are annotated as hypothetical proteins. This lack of functional information severely limits our understanding of Mtb pathogenicity. Current tools for experimental functional annotation are limited and often do not scale to entire protein families. Here, we report a generally applicable chemical biology platform to functionally annotate bacterial proteins by combining activity-based protein profiling (ABPP) and quantitative LC-MS-based proteomics. As an example of this approach for high-throughput protein functional validation and discovery, we experimentally annotate the families of ATP-binding proteins in Mtb. Our data experimentally validate prior in silico predictions of >250 ATPases and adenosine nucleotide-binding proteins, and reveal 73 hypothetical proteins as novel ATP-binding proteins. We identify adenosine cofactor interactions with many hypothetical proteins containing a diversity of unrelated sequences, providing a new and expanded view of adenosine nucleotide binding in Mtb. Furthermore, many of these hypothetical proteins are both unique to Mycobacteria and essential for infection, suggesting specialized functions in mycobacterial physiology and pathogenicity. Thus, we provide a generally applicable approach for high throughput protein function discovery and validation, and highlight several ways in which application of activity-based proteomics data can improve the quality of functional annotations to facilitate novel biological insights.

Revised: April 1, 2013 | Published: January 24, 2013

Citation

Ansong C., C. Ortega, S.H. Payne, D.H. Haft, L.M. Chauvigne-Hines, M.P. Lewis, and A.R. Ollodart, et al. 2013. Identification of widespread adenosine nucleotide binding in Mycobacterium tuberculosis. Chemistry & Biology 20, no. 1:123-133. PNNL-SA-88963. doi:10.1016/j.chembiol.2012.11.008