Pyrochlore-structure oxides, A2B2O7, may exhibit remarkable radiation tolerance due to the ease with which they can accommodate disorder by transitioning to a defected fluorite structure. The mechanism of defect formation was explored by evaluating the radiation damage behavior of high quality epitaxial La2Zr2O7 thin films with the defected fluorite structure, irradiated with 1 MeV Zr+ at doses up to 10 displacements per atom (dpa). The level of film damage was evaluated as a function of dose by Rutherford backscattering spectrometry in the channeling geometry (RBS/c) and scanning transmission electron microscopy (STEM). At lower doses, the surface of the La2Zr2O7 film amorphized, and the amorphous fraction as a function of dose fit well to a stimulated amorphization model. As the dose increased, the surface amorphization slowed, and amorphization appeared at the interface. Even at a dose of 10 dpa, the core of the film remained crystalline, despite the prediction of amorphization from the model. To inform future ab initio simulations of La2Zr2O7, the bandgap of a thick La2Zr2O7 film was measured to be indirect at 4.96 eV, with a direct transition at 5.60 eV.
Revised: April 21, 2020 |
Published: January 13, 2017
Citation
Kaspar T.C., J.G. Gigax, L. Shao, M.E. Bowden, T. Varga, V. Shutthanandan, and S.R. Spurgeon, et al. 2017.Damage evolution of ion irradiated defected-fluorite La2Zr2O7 epitaxial thin films.Acta Materialia 130.PNNL-SA-121946.doi:10.1016/j.actamat.2017.01.012