December 20, 2012
Journal Article

Curvature and Frontier Orbital Energies in Density Functional Theory

Abstract

Perdew et al. [Phys. Rev. Lett 49, 1691 (1982)] discovered and proved two different properties that exact Kohn-Sham density functional theory (DFT) must obey: (i) The exact total energy versus particle number must be a series of linear segments between integer electron points; (ii) Across an integer number of electrons, the exchange-correlation potential may ``jump’’ by a constant, known as the derivative discontinuity (DD). Here, we show analytically that in both the original and the generalized Kohn-Sham formulation of DFT, the two are in fact two sides of the same coin. Absence of a derivative discontinuity necessitates deviation from piecewise linearity, and the latter can be used to correct for the former, thereby restoring the physical meaning of the orbital energies. Using selected small molecules, we show that this results in a simple correction scheme for any underlying functional, including semi-local and hybrid functionals as well as Hartree-Fock theory, suggesting a practical correction for the infamous gap problem of density functional theory. Moreover, we show that optimally-tuned range-separated hybrid functionals can inherently minimize both DD and curvature, thus requiring no correction, and show that this can be used as a sound theoretical basis for novel tuning strategies.

Revised: March 11, 2013 | Published: December 20, 2012

Citation

Stein T., J. Autschbach, N. Govind, L. Kronik, and R. Baer. 2012. Curvature and Frontier Orbital Energies in Density Functional Theory. The Journal of Physical Chemistry Letters 3, no. 24:3740-3744. PNNL-SA-89902. doi:10.1021/jz3015937