Geological carbon sequestration (GCS) is a global carbon emission reduction strategy involving the capture of CO2 emitted from fossil fuel burning power plants, as well as the subsequent injection of the captured CO2 gas into deep saline aquifers or depleted oil and gas reservoirs. A critical question that arises from the proposed GCS is the potential impacts of CO2 injection on the quality of drinking-water systems overlying CO2 sequestration storage sites. Although storage reservoirs are evaluated and selected based on their ability to safely and securely store emplaced fluids, leakage of CO2 from storage reservoirs is a primary risk factor and potential barrier to the widespread acceptance of geologic CO2 sequestration (OR Harvey et al. 2013; Y-S Jun et al. 2013; DOE 2007). Therefore, a systematic understanding of how CO2 leakage would affect the geochemistry of potable aquifers, and subsequently control or affect elemental and contaminant release via sequential and/or simultaneous abiotic and biotic processes and reactions is vital.
Revised: March 16, 2017 |
Published: September 30, 2015