Applied Catalysis II Team Leader, Senior Research Engineer, and Project Manager in Energy Processes and Materials Division
Applied Catalysis II Team Leader, Senior Research Engineer, and Project Manager in Energy Processes and Materials Division

Biography

Robert Dagle is the Applied Catalysis II team leader, a senior research engineer, and a project manager within the Energy Processes and Materials Division of the Energy and Environment Directorate at Pacific Northwest National Laboratory. Mr. Dagle manages a team of staff members engaged in the development of innovative catalytic processes for the upgrading of biomass- or fossil-derived oxygenated intermediates (e.g., ethanol, syngas) to produce renewable or low-carbon fuels and chemicals. Mr. Dagle manages multiple projects sponsored by the U.S. Department of Energy’s Bioenergy Technologies Office. Current projects are aimed at converting biomass- and waste-derived ethanol to value-added fuels and chemicals, including butadiene, olefins, lubricants, high-octane gasoline, and jet fuel blendstock. Mr. Dagle also manages a cooperative research and development agreement project sponsored by the U.S. Department of Energy Fuel Cell Technology Office aimed at developing a process for the direct conversion of methane to low-CO2 hydrogen and valuable solid carbon co-products.

Mr. Dagle has research experience with multiple catalytic processes that include steam reforming of hydrocarbons and bio-derived oxygenates, conversion of bio-derived light oxygenates to fuels or chemicals, preferential CO oxidation and selective CO methanation for proton-exchange membrane fuel cell applications, catalytic combustion, water-gas-shift catalysis, reactive distillation, conversion of biomass-derived aqueous products to value-added fuels and chemicals, syngas conversion technologies (e.g., synthesis of alcohols, transportation fuels, synthetic natural gas, and hydrogen), and chemical synthesis (e.g., acetic acid, olefins, alcohols). Mr. Dagle also has experience with integrating engineered catalysts within novel reactor architectures for process intensification purposes (e.g., micro/mesochannel process technology). His work has benefited clientele in both the government and private industry arenas and has resulted in more than 50 journal articles and book chapters, as well as in numerous presentations. Mr. Dagle also serves on the steering committee for the Chemical Catalysis for Bioenergy Consortium, a U.S. Department of Energy national-lab-led R&D consortium dedicated to overcoming catalysis challenges for the conversion of biomass and waste resources into fuels, chemicals, and materials. Mr. Dagle has 15 issued U.S. patents and one R&D 100 Award (2014).

Research Interest

  • Heterogeneous Catalysis
  • Chemical Process Development

Education

  • MS, Chemical Engineering, Washington State University, Tri-Cities, WA 2005
  • BS, Chemical Engineering, Washington State University, Pullman, WA 1999

Affiliations and Professional Service

  • American Chemical Society (ACS)

Patents

Publications

2021

 

  • Dagle R.A. 2021. Higher Energy-Content Jet Blending Components Derived from Ethanol - CRADA 467. PNNL-SA-161145. Richland, WA: Pacific Northwest National Laboratory.
  • Dagle R.A. 2021. Microchannel Reactor for Ethanol to Butene - CRADA 503. PNNL-SA-166047. Richland, WA: Pacific Northwest National Laboratory. Microchannel Reactor for Ethanol to Butene - CRADA 503
  • Dagle R.A. 2021. Simultaneous Capture and Conversion of CO2 to Methanol via a Switchable Ionic Liquid and Low-Temperature Metal Catalyst - CRADA 449. PNNL-SA-159553. Richland, WA: Pacific Northwest National Laboratory.
  • Kothandaraman J., J. Saavedra Lopez, Y. Jiang, E.D. Walter, S.D. Burton, R.A. Dagle, and D.J. Heldebrant. 2021. "Integrated Capture and Conversion of CO2 to Methane using a Water-lean, Post Combustion CO2 Capture Solvent." ChemSusChem 14, no. 21:4812-4819. PNNL-SA-162553. doi:10.1002/cssc.202101590
  • Lin F., V. Dagle, A.D. Winkelman, M.H. Engelhard, L. Kovarik, Y. Wang, and Y. Wang, et al. 2021. "Understanding the Deactivation of Ag-ZrO2/SiO2 Catalysts for the Single-Step Conversion of Ethanol to Butenes." ChemCatChem 13, no. 3:999-1008. PNNL-SA-158105. doi:10.1002/cctc.202001488
  • Maddi B., S.D. Davidson, H.M. Job, R.A. Dagle, M.F. Guo, M.J. Gray, and K. Kallupalayam Ramasamy. 2021. "Production of Gaseous Olefins from Syngas over a Cobalt-HZSM-5 Catalyst." Catalysis Letters 151, no. 2:526-537. PNNL-SA-134786. doi:10.1007/s10562-020-03324-7
  • Wang I., R.A. Dagle, T.S. Khan, J.A. Lopez-Ruiz, L. Kovarik, Y. Jiang, and M. Xu, et al. 2021. "Catalytic decomposition of methane into hydrogen and high-value carbons: combined experimental and DFT computational study." Catalysis Science & Technology 11, no. 14:4911-4921. PNNL-SA-163856. doi:10.1039/D1CY00287B
  • Xu M., J.A. Lopez-Ruiz, L. Kovarik, M.E. Bowden, S.D. Davidson, R.S. Weber, and I. Wang, et al. 2021. "Structure sensitivity and its effect on methane turnover and carbon co-product selectivity in thermocatalytic decomposition of methane over supported Ni catalysts." Applied Catalysis A: General 611. PNNL-SA-158733. doi:10.1016/j.apcata.2020.117967

 

2020

  • Akhade S.A., A.D. Winkelman, V. Dagle, L. Kovarik, S.F. Yuk, M. Lee, and J. Zhang, et al. 2020. "Influence of Ag metal dispersion on the thermal conversion of ethanol to butadiene over Ag-ZrO2/SiO2 catalysts." Journal of Catalysis 386. PNNL-SA-143386. doi:10.1016/j.jcat.2020.03.030
  • Dagle R.A., A.D. Winkelman, K. Kallupalayam Ramasamy, V. Dagle, and R.S. Weber. 2020. "Ethanol as a renewable building block for fuels and chemicals." Industrial and Engineering Chemistry Research 59, no. 11:4843-4853. PNNL-SA-148314. doi:10.1021/acs.iecr.9b05729
  • Dagle R.A., V. Dagle, M.D. Bearden, J.D. Holladay, T.R. Krause, and S. Ahmed. 2020. "Hydrogen and Solid Carbon Products from Natural Gas: A Review of Process Requirements, Current Technologies, Market Analysis, and Preliminary Techno Economic Assessment." In Direct Natural Gas Conversion to Value-Added Chemicals, edited by J. Hu and D Shekhawat. Oxfordshire:Taylor & Francis Group. PNNL-SA-134166. doi:10.1201/9780429022852
  • Dagle V., A.D. Winkelman, N.R. Jaegers, J. Saavedra Lopez, J.Z. Hu, M.H. Engelhard, and S. Habas, et al. 2020. "Single-Step Conversion of Ethanol to n-Butene over Ag-ZrO2/SiO2 Catalysts." ACS Catalysis 10, no. 18:10602-10613. PNNL-SA-151691. doi:10.1021/acscatal.0c02235
  • Dagle V., J. Saavedra Lopez, A.R. Cooper, J. Luecke, M.S. Swita, R.A. Dagle, and D.J. Gaspar. 2020. "Production and Fuel properties of Iso-Olefins with Controlled Molecular Structure and Obtained from Butene Oligomerization." Fuel 277. PNNL-SA-152680. doi:10.1016/j.fuel.2020.118147
  • Hu J., C. Wildfire, A. Stiegman, R.A. Dagle, D. Shekhawat, V. Abdel-Sayed, and X. Bai, et al. 2020. "Microwave-driven heterogeneous catalysis for activation of dinitrogen to ammonia under atmospheric pressure." Chemical Engineering Journal 397. PNNL-SA-143389. doi:10.1016/j.cej.2020.125388

2019

  • Bharadwaj V.S., B. Pecha, L. Bu, V. Dagle, R.A. Dagle, and P. Ciesielski. 2019. "Multi-scale simulation of reaction, transport and deactivation in SBA-16 supported catalyst for the conversion of ethanol to butadiene." Catalysis Today 338. PNNL-SA-139387. doi:10.1016/j.cattod.2019.05.042
  • Dagle V., R.A. Dagle, L. Kovarik, F. Baddour, S. Habas, and R.T. Elander. 2019. "Single-step Conversion of Methyl Ethyl Ketone to Olefins over ZnxZryOz Catalysts in Water." ChemCatChem 11, no. 15:3393-3400. PNNL-SA-140968. doi:10.1002/cctc.201900292
  • Davidson S.D., J.A. Lopez-Ruiz, M.D. Flake, A.R. Cooper, Y. Elkasabi, M. Tomasi Morgano, and V. Dagle, et al. 2019. "Cleanup and Conversion of Biomass Liquefaction Aqueous Phase to C3-C5 Olefins over ZnxZryOz Catalyst." Catalysts 9, no. 11:923. PNNL-SA-148421. doi:10.3390/catal9110923
  • Davidson S.D., J.A. Lopez-Ruiz, Y. Zhu, A.R. Cooper, K.O. Albrecht, and R.A. Dagle. 2019. "Strategies to Valorize the Hydrothermal Liquefaction-Derived Aqueous Phase into Fuels and Chemicals." ACS Sustainable Chemistry & Engineering 7, no. 24:19889-19901. PNNL-SA-135076. doi:10.1021/acssuschemeng.9b05308
  • Saavedra Lopez J., R.A. Dagle, V. Dagle, C.D. Smith, and K.O. Albrecht. 2019. "Oligomerization of ethanol-derived propene and isobutene mixtures to transportation fuels: catalyst and process considerations." Catalysis Science & Technology 9, no. 5:1117-1131. PNNL-SA-135575. doi:10.1039/C8CY02297F
  • Saavedra Lopez J., V. Dagle, C.A. Deshmane, L. Kovarik, R.S. Wegeng, and R.A. Dagle. 2019. "Methane and Ethane Steam Reforming over MgAl2O4-Supported Rh and Ir Catalysts: Catalytic Implications for Natural Gas Reforming Application." Catalysts 9, no. 10:Article No. 801. PNNL-SA-146376. doi:10.3390/catal9100801

2018

  • Albrecht K.O., R.A. Dagle, D.T. Howe, J.A. Lopez-Ruiz, S.D. Davidson, B. Maddi, and A.R. Cooper, et al. 2018. Final Report for the Project Characterization and Valorization of Aqueous Phases Derived from Liquefaction and Upgrading of Bio-Oils. PNNL-27848. Richland, WA: Pacific Northwest National Laboratory.
  • Dagle V., M.D. Flake, T.L. Lemmon, J. Saavedra Lopez, L. Kovarik, and R.A. Dagle. 2018. "Effect of the SiO2 Support on the Catalytic Performance of Ag/ZrO2/SiO2 Catalysts for the Single-Bed Production of Butadiene from Ethanol." Applied Catalysis. B, Environmental 236. PNNL-SA-128543. doi:10.1016/j.apcatb.2018.05.055
  • Kothandaraman J., R.A. Dagle, V. Dagle, S.D. Davidson, E.D. Walter, S.D. Burton, and D.W. Hoyt, et al. 2018. "Condensed-Phase Low Temperature Heterogeneous Hydrogenation of CO2 to Methanol." Catalysis Science & Technology 8, no. 19:5098-5103. PNNL-SA-133245. doi:10.1039/C8CY00997J

2017

  • Davidson S.D., K.A. Spies, D. Mei, L. Kovarik, I.V. Kutnyakov, X.S. Li, and V. Dagle, et al. 2017. "Steam Reforming of Acetic Acid over Co-supported Catalysts: Coupling Ketonization for Greater Stability." ACS Sustainable Chemistry & Engineering 5, no. 10:9136-9149. PNNL-SA-125545. doi:10.1021/acssuschemeng.7b02052
  • Spies K.A., J.E. Rainbolt, X.S. Li, B. Braunberger, L. Li, D.L. King, and R.A. Dagle. 2017. "Warm Cleanup of Coal-Derived Syngas: Multicontaminant Removal Process Demonstration." Energy and Fuels 31, no. 3:2448-2456. PNNL-SA-120510. doi:10.1021/acs.energyfuels.6b02568

2016

  • Lebarbier V.M., C.D. Smith, M.D. Flake, K.O. Albrecht, M.J. Gray, K.K. Ramasamy, and R.A. Dagle. 2016. "Integrated Process for the Catalytic Conversion of Biomass-Derived Syngas into Transportation Fuels." Green Chemistry 18, no. 7:1880-1891. PNNL-SA-113248. doi:10.1039/c5gc02298c
  • Lebarbier V.M., R.A. Dagle, L. Kovarik, A. Genc, Y. Wang, M.E. Bowden, and H. Wan, et al. 2016. "Steam Reforming of Hydrocarbons from Biomass-Derived Syngas over MgAl2O4-Supported Transition Metals and Bimetallic IrNi Catalysts." Applied Catalysis. B, Environmental 184. PNNL-24262. doi:10.1016/j.apcatb.2015.11.022
  • Smith C.D., V.M. Lebarbier, M.D. Flake, K.K. Ramasamy, L. Kovarik, M.E. Bowden, and T. Onfroy, et al. 2016. "Conversion of Syngas-Derived C2+ Mixed Oxygenates to C3-C5 Olefins over ZnxZryOz Mixed Oxides Catalysts." Catalysis Today 6, no. 7:2325-2316. PNNL-SA-111860. doi:10.1039/C5CY01261A
  • Tan E., L.J. Snowden-Swan, M. Talmadge, A. Dutta, S.B. Jones, K. Kallupalayam Ramasamy, and M.J. Gray, et al. 2016. "Comparative Techno-economic Analysis and Process Design for Indirect Liquefaction Pathways to Distillate-range Fuels via Biomass-derived Oxygenated Intermediates Upgrading." Biofuels, Bioproducts & Biorefining 11, no. 1:41-66. PNNL-SA-120207. doi:10.1002/bbb.1710
  • Xing R., V.M. Lebarbier, M.D. Flake, L. Kovarik, K.O. Albrecht, C.A. Deshmane, and R.A. Dagle. 2016. "Steam Reforming of Fast Pyrolysis-Derived Aqueous Phase Oxygenates over Co, Ni, and Rh Metals Supported on MgAl2O4." Catalysis Today 269. PNNL-SA-111967. doi:10.1016/j.cattod.2015.11.046

2015

  • Mei D., V.M. Lebarbier, R. Xing, K.O. Albrecht, and R.A. Dagle. 2015. "Steam Reforming of Ethylene Glycol over MgAl2O4 Supported Rh, Ni, and Co Catalysts." ACS Catalysis 6, no. 1:315-325. PNNL-SA-112396. doi:10.1021/acscatal.5b01666
  • Zheng F., R. Diver, D.D. Caldwell, B.G. Fritz, R.J. Cameron, P.H. Humble, and W.E. TeGrotenhuis, et al. 2015. "Integrated solar thermochemical reaction system for steam methane reforming." Energy Procedia 69. PNNL-SA-104155. doi:10.1016/j.egypro.2015.03.204

2014

  • Dagle R.A., D.L. King, X.S. Li, R. Xing, K.A. Spies, Y. Zhu, and J.E. Rainbolt, et al. 2014. Coal-Derived Warm Syngas Purification and CO2 Capture-Assisted Methane Production. PNNL-23777. Richland, WA: Pacific Northwest National Laboratory. Coal-Derived Warm Syngas Purification and CO2 Capture-Assisted Methane Production
  • Dagle R.A., J.A. Lizarazo Adarme, V.M. Lebarbier, M.J. Gray, J.F. White, D.L. King, and D.R. Palo. 2014. "Syngas Conversion to Gasoline-Range Hydrocarbons over Pd/ZnO/Al2O3 and ZSM-5 Composite Catalyst System." Fuel Processing Technology 123. PNNL-SA-86935. doi:10.1016/j.fuproc.2014.01.041
  • Kwak J., R.A. Dagle, G.C. Tustin, J.R. Zoeller, L.F. Allard, and Y. Wang. 2014. "Molecular Active Sites in Heterogeneous Ir-La/C Catalyzed Carbonylation of Methanol to Acetates." Journal of Physical Chemistry Letters 5, no. 3:566-572. PNWD-SA-9799. doi:10.1021/jz402728e
  • Lebarbier Dagel V.M., J. Li, C.E. Taylor, Y. Wang, R.A. Dagle, C.A. Deshmane, and X. Bao. 2014. Task 3.3: Warm Syngas Cleanup and Catalytic Processes for Syngas Conversion to Fuels Subtask 3: Advanced Syngas Conversion to Fuels. PNNL-23207. Richland, WA: Pacific Northwest National Laboratory. Task 3.3: Warm Syngas Cleanup and Catalytic Processes for Syngas Conversion to Fuels Subtask 3: Advanced Syngas Conversion to Fuels
  • Lebarbier Dagel V.M., R.A. Dagle, J. Li, C.A. Deshmane, C.E. Taylor, X. Bao, and Y. Wang. 2014. "Direct Conversion of Syngas-to-Hydrocarbons over Higher Alcohols Synthesis Catalysts Mixed with HZSM-5." Industrial and Engineering Chemistry Research 53, no. 36:13928-13934. PNNL-SA-103407. doi:10.1021/ie502425d
  • Lebarbier V.M., R.A. Dagle, L. Kovarik, K.O. Albrecht, X.S. Li, L. Li, and C.E. Taylor, et al. 2014. "Sorption-Enhanced Synthetic Natural Gas (SNG) Production from Syngas: A Novel Process Combining CO Methanation, Water-Gas Shift, and CO2 Capture." Applied Catalysis. B, Environmental 144. PNNL-SA-90830. doi:10.1016/j.apcatb.2013.06.034
  • Mei D., V.A. Glezakou, V.M. Lebarbier, L. Kovarik, H. Wan, K.O. Albrecht, and M.A. Gerber, et al. 2014. "Highly Active and Stable MgAl2O4 Supported Rh and Ir Catalysts for Methane Steam Reforming: A Combined Experimental and Theoretical Study." Journal of Catalysis 316. PNNL-SA-99099. doi:10.1016/j.jcat.2014.04.021

2013

  • Dagle R.A., J. Hu, S.B. Jones, W.A. Wilcox, J.G. Frye, J.F. White, and J. Jiang, et al. 2013. "Carbon Dioxide Conversion to Valuable Chemical Products over Composite Catalytic