Chemist
Chemist

Biography

As a research scientist at Pacific Northwest National Laboratory, Bauman's interests largely center around developing, implementing, and applying low-cost wave function methods and models for reducing the dimensionality of problems in a robust and computationally efficient manner. He is especially interested in seeing these methods being developed and utilized on modern computer architectures, such as near-term exascale systems and the rapidly developing field of quantum computers. He seeks to incorporate powerful tools, such as machine learning, to enhance these advances and holds a fervent desire to develop and apply ground and excited-state many-body methodologies that can accurately and reliably describe complex states that have eluded standard quantum chemistry methods, including core-level excitations, Rydberg states, ionization processes, and strongly correlated interactions.  

Research Interest

  • Chemical physics
  • High-performance computing
  • Parallel computing
  • Physical chemistry
  • Quantum chemistry
  • Quantum computing
  • Quantum mechanics
  • Theoretical chemistry

Disciplines and Skills

  • C++
  • Fortran
  • Python

Education

  • PhD in chemistry, Michigan State University
  • BS in chemistry, Michigan Technological University

Affiliations and Professional Service

  • Quantum Science Center

Publications

2023

  • Mejia Rodriguez D., E. Apra, J. Autschbach, N.P. Bauman, E.J. Bylaska, N. Govind, and J.R. Hammond, et al. 2023. "NWChem: Recent and Ongoing Developments." Journal of Chemical Theory and Computation 19, no. 20:7077-7096. PNNL-SA-184233. doi:10.1021/acs.jctc.3c00421
  • Mutlu E., A.R. Panyala, N. Gawande, A. Bagusetty, J.G. Glabe, J. Kim, and K. Kowalski, et al. 2023. "TAMM: Tensor Algebra for Many-body Methods." The Journal of Chemical Physics 159, no. 2:Art. No. 02480. PNNL-SA-169718. doi:10.1063/5.0142433
  • Song D., N.P. Bauman, G. Prawiroatmodjo, B. Peng, C. Grenade, K.M. Russo, G.H. Low, et al. 2023. “Periodic plane-wave electronic structure calculations on quantum computers.” Materials Theory 7, No. 2,  doi:10.1186/s41313-022-00049-5
  • Pathak H., A.R. Panyala, B. Peng, N.P. Bauman, E. Mutlu, J.J. Rehr, and F.D. Vila, et al. 2023. "Real-time Equation-of-Motion Coupled-Cluster Cumulant Green's Function Method: Heterogeneous Parallel Implementation Based on the Tensor Algebra for Many-body Methods Infrastructure." Journal of Chemical Theory and Computation 19, no. 8:2248–2257. PNNL-SA-180735. doi:10.1021/acs.jctc.3c00045

2022

  • Kang C.T., N.P. Bauman, S. Krishnamoorthy, and K. Kowalski. 2022. "Optimized Quantum Phase Estimation for Simulating Electronic States in Various Energy Regimes." Journal of Chemical Theory and Computation 18, no. 11:6567-6576. PNNL-SA-173566. doi:10.1021/acs.jctc.2c00577
  • Kowalski K., and N.P. Bauman. 2022. "Fock-space Schrieffer-Wolff transformation: classically-assisted rank-reduced quantum phase estimation algorithm." Applied Sciences 13, no. 1:Art. No. 539. PNNL-SA-179600. doi:10.3390/app13010539
  • Bauman N.P., and K. Kowalski. 2022. “Coupled cluster downfolding methods: The effect of double commutator terms on the accuracy of ground-state energies.” Journal of Chemical Physics 156, No. 094106. doi:10.1063/5.0076260
  • Bauman N.P., and K. Kowalski. 2022. “Coupled Cluster Downfolding Theory: towards universal many-body algorithms for dimensionality reduction of composite quantum systems on chemistry and materials science.” Materials Theory 6, No. 17. doi:10.1186/s41313-022-00046-8
  • Vila F.D., H. Pathak, B. Peng, A.R. Panyala, E. Mutlu, N.P. Bauman, and J.J. Rehr, et al. 2022. "Real-time equation-of-motion CC cumulant and CC Green's function simulations of photoemission spectra of water and water dimer." Journal of Chemical Physics 157, no. 4:Art. No. 44101. PNNL-SA-173143. doi:10.1063/5.0099192

2021

  • Bauman N.P., H. Liu, E.J. Bylaska, S. Krishnamoorthy, G. Low, C.E. Granade, and N.O. Wiebe, et al. 2021. "Toward quantum computing for high-energy excited states in molecular systems: quantum phase estimations of core-level states." Journal of Chemical Theory and Computation 17, no. 1:201-210. PNNL-SA-154437. doi:10.1021/acs.jctc.0c00909
  • Bauman N.P., J. Chladek, L. Veis, J. Pittner, and K. Kowalski. 2021. "Variational Quantum Eigensolver for Approximate Diagonalization of Downfolded Hamiltonians using Generalized Unitary Coupled Cluster Ansatz." Quantum Science and Technology 6, no. 3:034008. PNNL-SA-157550. doi:10.1088/2058-9565/abf602
  • Bylaska E.J., D. Song, N.P. Bauman, K. Kowalski, D. Claudino, and T.S. Humble. 2021. "Quantum Solvers for Plane-Wave Hamiltonians: Abridging Virtual Spaces Through the Optimization of Pairwise Correlations." Frontiers in Chemistry 9. PNNL-SA-155915. doi:10.3389/fchem.2021.603019
  • Claudino D., B. Peng, N.P. Bauman, K. Kowalski, and T.S. Humble. 2021. "Improving the accuracy and efficiency of quantum connected moments expansions." Quantum Science and Technology 6, no. 3:034012. PNNL-SA-160369. doi:10.1088/2058-9565/ac0292
  • Kowalski K., R.A. Bair, N.P. Bauman, J.S. Boschen, E.J. Bylaska, J.A. Daily, and W.A. de Jong, et al. 2021. "From NWChem to NWChemEx: Evolving with the Computational Chemistry Landscape." Chemical Reviews 121, no. 8:4962-4998. PNNL-SA-147110. doi:10.1021/acs.chemrev.0c00998
  • Peng B., N.P. Bauman, S. Gulania, and K. Kowalski. 2021. "Coupled cluster Green's function: Past, Present, and Future." In Annual Reports in Computational Chemistry. 23-53. Amsterdam: Elsevier. PNNL-SA-163948. doi:10.1016/bs.arcc.2021.08.002

2020

  • Apra E., E.J. Bylaska, W.A. De Jong, N. Govind, K. Kowalski, T.P. Straatsma, and M. Valiev, et al. 2020. "NWChem: Past, Present, and Future." The Journal of Chemical Physics 152, no. 18:184102. PNNL-SA-151542. doi:10.1063/5.0004997
  • Bauman N.P., B. Peng, and K. Kowalski. 2020. "Coupled Cluster Green’s function formulations based on the effective Hamiltonians." Molecular Physics 118, no. 19-20:Art. No. e1725669. PNNL-SA-147917. doi:10.1080/00268976.2020.1725669
  • Kowalski K., and N.P. Bauman. 2020. "Sub-system quantum dynamics using coupled cluster downfolding techniques." Journal of Chemical Physics 152, no. 24:Article No. 244127. PNNL-SA-152224. doi:10.1063/5.0008436
  • Metcalf M., N.P. Bauman, K. Kowalski, and W.A. De Jong. 2020. "Resource-Efficient Chemistry on Quantum Computers with the Variational Quantum Eigensolver and The Double Unitary Coupled-Cluster approach." Journal of Chemical Theory and Computation 16, no. 10:6165-6175. PNNL-SA-152653. doi:10.1021/acs.jctc.0c00421

2019

  • Bauman N.P., E.J. Bylaska, S. Krishnamoorthy, G. Low, N.O. Wiebe, C.E. Granade, and M. Roetteler, et al. 2019. "Downfolding of many-body Hamiltonians using active-space models: extension of the sub-system embedding sub-algebras approach to unitary coupled cluster formalisms." Journal of Chemical Physics 151, no. 1:Article Number 014107. PNNL-SA-141041. doi:10.1063/1.5094643
  • Bauman N.P., G. Low, and K. Kowalski. 2019. "Quantum simulations of excited states with active-space downfolded Hamiltonians." Journal of Chemical Physics 151, no. 23:Article No. 234114. PNNL-SA-146959. doi:10.1063/1.5128103