Bo Peng
Bo Peng
Biography
Bo Peng obtained his BS in chemistry from Nankai University in 2005, and his PhD in theoretical chemistry from the University of Washington in 2016. He then joined PNNL as a Linus Pauling fellow in 2016, working on the development of low-scaling coupled cluster approach and its related high-performance computing library. In 2019, he transitioned to staff scientist in the Physical and Computational Science Division. His research focuses on the developments and applications of many-body theories and their advanced computational approaches and libraries. He frequently partners with the Department of Energy Office of Science, Basic Energy Sciences program.
Bo Peng is doing work on co-designed quantum many body framework to support the mission of US DOE Basic Energy Science PDM.
Research Interest
- Many-body theory
- High performance computing
- Quantum information science
Education
- MA in Business Administration, University of Washington, Seattle, 2027
- PhD in Theoretical Chemistry, University of Washington, Seattle, 2016
- PhD in Experimental Inorganic Chemistry, Nankai University, 2010
- BS in Chemistry, Nankai University, 2005
Affiliations and Professional Service
- American Chemistry Society
- American Physics Society
- Society for Industrial and Applied Mathematics
- Association for Computing Machinery
Awards and Recognitions
- Ronald L. Brodzinski Award for Early Career Exceptional Achievement, PNNL (2025)
- Outstanding Performance Award, PNNL (2025)
- Early Career Research Award, U.S. Department of Energy (2024)
- Computational and Theoretical Chemistry Institute (CTCI), PNNL (2024)
- Electronic Structure Emerging Leader Recognition (2024)
- Outstanding Performance Award, PNNL (2023)
- Exceptional Contribution Award, PNNL (2022)
- Pathway to Excellence Award for presentation in Heidelberg Laureate Forum, PNNL (2021)
- Selected from worldwide young scientist applicants to attend Heidelburg Laureate Forum (2020)
- Early Career Travel Award for Parallel Processing for Scientific Computing, Society for Industrial and Applied Mathematics (2019)
- Early Career Research Prize for studying the properties of advanced coupled cluster Green’s function, Molecular Physics (2018)
- IBM-Löwdin Postdoctoral Associate Award for developing low-rank factorization of electron integral tensors and its application in electronic structure theory (2017)
- Best Performance Award, Earth and Biological Sciences Directorate, PNNL (2017)
- Linus Pauling Distinguished Postdoctoral Fellowship for developing low-scaling coupled cluster approach and its high-performance computing library (2016)
- Research Excellence Award for developing energy-specific equation-of-motion coupled cluster approach for simulating K-edge X-ray Absorption Spectroscopy, Chemical Computing Group, American Chemistry Society (2015)
Publications
2025
- Bo Peng et al. 2025. “Quantum simulation of boson-related Hamiltonians: techniques, effective Hamiltonian construction, and error analysis.” Quantum Sci. Technol. 10 023002. DOI 10.1088/2058-9565/adbf42
- Sahil Gulania, Yuri Alexeev, Stephen K. Gray, Bo Peng, and Niranjan Govind et al. 2025. “Quantum Time Dynamics Mediated by the Yang–Baxter Equation and Artificial Neural Networks.” Journal of Chemical Theory and Computation 2025 21 (13), 6280-6291. DOI: 10.1021/acs.jctc.5c00353.
- Yuri Alexeev and Victor S. Batista and Nicholas Bauman and Luke Bertels and Daniel Claudino and Rishab Dutta and Laura Gagliardi and Scott Godwin and Niranjan Govind et al. 2025. “A Perspective on Quantum Computing Applications in Quantum Chemistry using 25--100 Logical Qubits.” https://arxiv.org/abs/2506.19337.
- Nicholas P. Bauman and Muqing Zheng and Chenxu Liu and Nathan M. Myers and Ajay Panyala and Bo Peng and Ang Li and Karol Kowalski et al. 2025. “Coupled Cluster Downfolding Theory in Simulations of Chemical Systems on Quantum Hardware.” https://arxiv.org/abs/2507.01199.
2024
- Ogunkoya, Oluwadara and Kim, Joonho and Peng, Bo and Alexeev, Yuri et al. 2024. “Qutrit circuits and algebraic relations: A pathway to efficient spin-1 Hamiltonian simulation.” Phys. Rev. A, doi: 10.1103/PhysRevA.109.012426.
- Sahil Gulania and Yuri Alexeev and Stephen K. Gray and Bo Peng and Niranjan Govind et al. 2024. “Quantum time dynamics mediated by the Yang-Baxter equation and artificial neural networks.” https://arxiv.org/abs/2401.17116.
- Bo Peng and Karol Kowalski, et al. 2024. “Integrating subsystem embedding subalgebras and coupled cluster Green’s function: a theoretical foundation for quantum embedding in excitation manifold.” Electron. Struct. 6 015005. DOI 10.1088/2516-1075/ad1e3b.
- Fernando D. Vila, John J. Rehr, Karol Kowalski, and Bo Peng et al. 2024. “RT-EOM-CCSD Calculations of Inner and Outer Valence Ionization Energies and Spectral Functions.” Journal of Chemical Theory and Computation 2024 20 (5), 1796-1801. DOI: 10.1021/acs.jctc.3c01371.
- Vila, Fernando and Rehr, John and Kowalski, Karol and Peng, Bo, et al. 2024. “RT-EOM-CCSD Inner and Outer Valence Ionization Energies.”APS Meeting Abstracts. https://ui.adsabs.harvard.edu/abs/2024APS..MARCC04005.
- S. M. Ferdous et al., "Picasso: Memory-Efficient Graph Coloring Using Palettes With Applications in Quantum Computing," 2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS), San Francisco, CA, USA, 2024, pp. 241-252, doi: 10.1109/IPDPS57955.2024.00029.
- Z. He, B. Peng, Y. Alexeev and Z. Zhang, "Distributionally Robust Variational Quantum Algorithms With Shifted Noise," in IEEE Transactions on Quantum Engineering, vol. 5, pp. 1-12, 2024, Art no. 3102112, doi: 10.1109/TQE.2024.3409309.
- Karol Kowalski, Bo Peng, Nicholas P. Bauman; The accuracies of effective interactions in downfolding coupled-cluster approaches for small-dimensionality active spaces. J. Chem. Phys. 14 June 2024; 160 (22): 224107. https://doi.org/10.1063/5.0207534.
- Hugh G. A. Burton, Sijia S. Dong, Soumen Ghosh, Bing Gu, Nicholas E. Jackson, Daniel Keefer, Yangyi Lu, Jacob I. Monroe, Bo Peng, Elisa Pieri, Peter R. Spackman, Morgane Vacher, Stefan Vuckovic, David Williams-Young, Zhongyue J. Yang, Shuwen Yue, Gül H. Zerze, and Tianyu Zhu et al. 2024. “JCTC Early Career Board Selects.” Journal of Chemical Theory and Computation. 20 (14), 5785-5787. DOI: 10.1021/acs.jctc.4c00787.
- Eric J. Bylaska, Ajay Panyala, Nicholas P. Bauman, Bo Peng, Himadri Pathak, Daniel Mejia-Rodriguez, Niranjan Govind, David B. Williams-Young, Edoardo Aprà, Abhishek Bagusetty, Erdal Mutlu, Koblar A. Jackson, Tunna Baruah, Yoh Yamamoto, Mark R. Pederson, Kushantha P. K. Withanage, Jesús N. Pedroza-Montero, Jenna A. Bilbrey, Sutanay Choudhury, Jesun Firoz, Kristina M. Herman, Sotiris S. Xantheas, Paul Rigor, Fernando D. Vila, John J. Rehr, Mimi Fung, Adam Grofe, Conrad Johnston, Nathan Baker, Ken Kaneko, Hongbin Liu, Karol Kowalski; Electronic structure simulations in the cloud computing environment. J. Chem. Phys. 21 October 2024; 161 (15): 150902. https://doi.org/10.1063/5.0226437
- Sahil Gulania et al. 2024. “Hybrid algorithm for the time-dependent Hartree–Fock method using the Yang–Baxter equation on quantum computers.” Electron. Struct. 6 045007. DOI 10.1088/2516-1075/ad839b.
- Bo Peng, Himadri Pathak, Ajay Panyala, Fernando D. Vila, John J. Rehr, Karol Kowalski; Exploring the exact limits of the real-time equation-of-motion coupled cluster cumulant Green’s functions. J. Chem. Phys. 28 November 2024; 161 (20): 204102. https://doi.org/10.1063/5.0233339
- Zheng, M., Peng, B., Li, A. et al. Unleashed from constrained optimization: quantum computing for quantum chemistry employing generator coordinate inspired method. npj Quantum Inf 10, 127 (2024). https://doi.org/10.1038/s41534-024-00916-8.
- Matthew X Burns et al. 2025. “GALIC: hybrid multi-qubitwise pauli grouping for quantum computing measurement.” Quantum Sci. Technol. 10 015054. DOI 10.1088/2058-9565/ad9d74.
2023
- Peng, Bo and Khesin, Andrey and Ozguler, A. Baris and Ogunkoya, Oluwadara and Otten, Matthew and Alexeev, Yuri and Govind, Niranjan, et al. 2023. “Quantum time dynamics of qudit Hamiltonians employing the Yang-Baxter equation for circuit compression.” APS March Meeting Abstracts, https://ui.adsabs.harvard.edu/abs/2023APS..MARY72006P.
- Gulania, Sahil and He, Zichang and Peng, Bo and Govind, Niranjan and Alexeev, Yuri, et al. 2023. “Efficient quantum time dynamics using the Yang-Baxter equation.” APS March Meeting Abstracts. https://ui.adsabs.harvard.edu/abs/2023APS..MARY72003G.
- Vila, Fernando and Pathak, Himadri and Panyala, Ajay and Peng, Bo and Bauman, Nicholas and Mutlu, Erdal and Rehr, John and Kowalski, Karol, et al. 2023. “Recent Developments in the Implementation of the RT-EOM-CC Green's Function Approach, APS March Meeting Abstracts, https://ui.adsabs.harvard.edu/abs/2023APS..MARAA4007V.
- Nicholas P. Bauman, Bo Peng, Karol Kowalski, et al. 2023. “Chapter Two - Coupled-cluster downfolding techniques: A review of existing applications in classical and quantum computing for chemical systems.” Advances in Quantum Chemistry, Academic Press, 87, 141-166, https://doi.org/10.1016/bs.aiq.2023.03.006.
- Song, D., Bauman, N.P., Prawiroatmodjo, G. et al. Periodic plane-wave electronic structure calculations on quantum computers. Mater Theory 7, 2 (2023). https://doi.org/10.1186/s41313-022-00049-5
- Jan P. Unsleber, Hongbin Liu, Leopold Talirz, Thomas Weymuth, Maximilian Mörchen, Adam Grofe, Dave Wecker, Christopher J. Stein, Ajay Panyala, Bo Peng, Karol Kowalski, Matthias Troyer, Markus Reiher; High-throughput ab initio reaction mechanism exploration in the cloud with automated multi-reference validation. J. Chem. Phys. 28 February 2023; 158 (8): 084803. https://doi.org/10.1063/5.0136526
- Avijit Shee, Chia-Nan Yeh, Bo Peng, Karol Kowalski, and Dominika Zgid, et al. 2023. “Triple Excitations in Green’s Function Coupled Cluster Solver for Studies of Strongly Correlated Systems in the Framework of Self-Energy Embedding Theory.” The Journal of Physical Chemistry Letters 14 (9), 2416-2424. DOI: 10.1021/acs.jpclett.2c03616
- Himadri Pathak, Ajay Panyala, Bo Peng, Nicholas P. Bauman, Erdal Mutlu, John J. Rehr, Fernando D. Vila, and Karol Kowalski et al. “Real-Time Equation-of-Motion Coupled-Cluster Cumulant Green’s Function Method: Heterogeneous Parallel Implementation Based on the Tensor Algebra for Many-Body Methods Infrastructure.” Journal of Chemical Theory and Computation 19 (8), 2248-2257. DOI: 10.1021/acs.jctc.3c00045
- Shashank G. Mehendale, Bo Peng, Niranjan Govind, and Yuri Alexeev et al. “Exploring Parameter Redundancy in the Unitary Coupled-Cluster Ansätze for Hybrid Variational Quantum Computing.” The Journal of Physical Chemistry A 2023 127 (20), 4526-4537. DOI: 10.1021/acs.jpca.3c00550.
- Zheng, Muqing and Peng, Bo and Wiebe, Nathan and Li, Ang and Yang, Xiu and Kowalski, Karol et al. 2023. “Quantum algorithms for generator coordinate methods.” Phys. Rev. Res. DOI: 10.1103/PhysRevResearch.5.023200.
- Daniel Claudino, Bo Peng, Karol Kowalski, and Travis S. Humble et al. 2023. “Modeling Singlet Fission on a Quantum Computer.” The Journal of Physical Chemistry Letters 14 (24), 5511-5516. DOI: 10.1021/acs.jpclett.3c01106
- Erdal Mutlu, Ajay Panyala, Nitin Gawande, Abhishek Bagusetty, Jeffrey Glabe, Jinsung Kim, Karol Kowalski, Nicholas P. Bauman, Bo Peng, Himadri Pathak, Jiri Brabec, Sriram Krishnamoorthy; TAMM: Tensor algebra for many-body methods. J. Chem. Phys. 14 July 2023; 159 (2): 024801. https://doi.org/10.1063/5.0142433
- Daniel Mejia-Rodriguez, Edoardo Aprà, Jochen Autschbach, Nicholas P. Bauman, Eric J. Bylaska, Niranjan Govind, Jeff R. Hammond, Karol Kowalski, Alexander Kunitsa, Ajay Panyala, Bo Peng, John J. Rehr, Huajing Song, Sergei Tretiak, Marat Valiev, and Fernando D. Vila. 2023. “NWChem: Recent and Ongoing Developments.” Journal of Chemical Theory and Computation 2023 19 (20), 7077-7096. DOI: 10.1021/acs.jctc.3c00421
- Rosa Di Felice, Maricris L. Mayes, Ryan M. Richard, David B. Williams-Young, Garnet Kin-Lic Chan, Wibe A. de Jong, Niranjan Govind, Martin Head-Gordon, Matthew R. Hermes, Karol Kowalski, Xiaosong Li, Hans Lischka, Karl T. Mueller, Erdal Mutlu, Anders M. N. Niklasson, Mark R. Pederson, Bo Peng, Ron Shepard, Edward F. Valeev, Mark van Schilfgaarde, Bess Vlaisavljevich, Theresa L. Windus, Sotiris S. Xantheas, Xing Zhang, and Paul M. Zimmerman. 2023. “A Perspective on Sustainable Computational Chemistry Software Development and Integration.” Journal of Chemical Theory and Computation. 19 (20), 7056-7076. DOI: 10.1021/acs.jctc.3c00419
- Hua, Fei and Wang, Meng and Li, Gushu and Peng, Bo and Liu, Chenxu and Zheng, Muqing and Stein, Samuel and Ding, Yufei and Zhang, Eddy Z. and Humble, Travis and Li, Ang. 2023. “QASMTrans: A QASM Quantum Transpiler Framework for NISQ Devices.” Association for Computing Machinery, doi: 10.1145/3624062.3624222.
2022
- F. D. Vila, K. Kowalski, B. Peng, J. J. Kas, and J. J. Rehr et al. 2022. “Real-Time Equation-of-Motion CCSD Cumulant Green’s Function.” Journal of Chemical Theory and Computation 2022 18 (3), 1799-1807. DOI: 10.1021/acs.jctc.1c01179
- Gulania, Sahil and Peng, Bo and Alexeev, Yuri and Govind, Niranjan, et al. 2022. “Polynomial Depth Quantum Circuits for Time Evolution of Heisenberg Models Using the Yang-Baxter Equation.” APS March Meeting Abstracts, https://ui.adsabs.harvard.edu/abs/2022APS..MARA01009G
- J. C. Aulicino, T. Keen, B. Peng, Int. J. et al. 2022. “State Preparation and evolution in quantum computing: A perspective from Hamiltonian moments.” Quantum Chem, 122(5), e26853. https://doi.org/10.1002/qua.26853
- Keen, Trevor and Peng, Bo and Kowalski, Karol and Lougovski, Pavel and Johnston, Steven, et al. 2022. “Hybrid quantum-classical approach for coupled-cluster {G}reen's function theory.” Quantum, https://doi.org/10.22331/q-2022-03-30-675
- Samuel Stein, Nathan Wiebe, Yufei Ding, Peng Bo, Karol Kowalski, Nathan Baker, James Ang, and Ang Li. 2022. EQC: ensembled quantum computing for variational quantum algorithms. In Proceedings of the 49th Annual International Symposium on Computer Architecture (ISCA '22). Association for Computing Machinery, New York, NY, USA, 59–71. https://doi.org/10.1145/3470496.3527434
- Peng, Bo and Gulania, Sahil and Alexeev, Yuri and Govind, Niranjan et al. 2022. “Quantum time dynamics employing the Yang-Baxter equation for circuit compression.” Phys. Rev. A, doi: 10.1103/PhysRevA.106.012412.
- Fernando D. Vila, John J. Rehr, Himadri Pathak, Bo Peng, Ajay Panyala, Erdal Mutlu, Nicholas P. Bauman, Karol Kowalski; Real-time equation-of-motion CC cumulant and CC Green’s function simulations of photoemission spectra of water and water dimer. J. Chem. Phys. 28 July 2022; 157 (4): 044101. https://doi.org/10.1063/5.0099192
- Peng, Bo and Kowalski, Karol, et al. 2022. “Mapping renormalized coupled cluster methods to quantum computers through a compact unitary representation of nonunitary operators.” American Physical Society, doi: 10.1103/PhysRevResearch.4.043172
- S. Gulania, Z. He, B. Peng, N. Govind and Y. Alexeev, "QuYBE - An Algebraic Compiler for Quantum Circuit Compression," 2022 IEEE/ACM 7th Symposium on Edge Computing (SEC), Seattle, WA, USA, 2022, pp. 406-410, doi: 10.1109/SEC54971.2022.00060.
- Fedorov D.A., B. Peng, N. Govind, and Y. Alexeev. 2022. "VQE method: A short survey and recent developments." Materials Theory 6, no. 1:1-21 PNNL-SA-169708. doi:10.1186/s41313-021-00032-6
2021
- Aulicino J.C., T. Keen, and B. Peng. 2021. "State preparation and evolution in quantum computing: a perspective from Hamiltonian moments." International Journal of Quantum Chemistry. PNNL-SA-166879. doi:10.1002/qua.26853
- Claudino D., B. Peng, N.P. Bauman, K. Kowalski, and T.S. Humble. 2021. "Improving the accuracy and efficiency of quantum connected moments expansions." Quantum Science and Technology 6, no. 3:034012. PNNL-SA-160369. doi:10.1088/2058-9565/ac0292
- Kowalski K., R.A. Bair, N.P. Bauman, J.S. Boschen, E.J. Bylaska, J.A. Daily, and W.A. de Jong, et al. 2021. "From NWChem to NWChemEx: Evolving with the Computational Chemistry Landscape." Chemical Reviews 121, no. 8:4962-4998. PNNL-SA-147110. doi:10.1021/acs.chemrev.0c00998
- Peng B., A.R. Panyala, K. Kowalski, and S. Krishnamoorthy. 2021. "GFCCLib: Scalable and efficient coupled-cluster Green's function library for accurately tackling many-body electronic structure problems." Computer Physics Communications 265, 108000. PNNL-SA-157112. doi:10.1016/j.cpc.2021.108000
- Peng B., and K. Kowalski. 2021. "Variational quantum solver employing the PDS energy functional." Quantum 5, 473. PNNL-SA-159264. doi:10.22331/q-2021-06-10-473
- Peng B., N.P. Bauman, S. Gulania, and K. Kowalski. 2021. "Coupled cluster Green's function: Past, Present, and Future." In Annual Reports in Computational Chemistry 17, 23-53. Amsterdam: Elsevier. PNNL-SA-163948. doi:10.1016/bs.arcc.2021.08.002
- Vila F.D., J.J. Kas, J.J. Rehr, K. Kowalski, and B. Peng. 2021. "Equation-of-Motion Coupled-Cluster Cumulant Green’s Function for Excited States and X-ray Spectra." Frontiers in Chemistry 9. PNNL-SA-163615. doi:10.3389/fchem.2021.734945
2020
- Bauman N.P., H. Liu, E.J. Bylaska, S. Krishnamoorthy, G. Low, C.E. Granade, and N.O. Wiebe, et al. 2020. "Toward quantum computing for high-energy excited states in molecular systems: quantum phase estimations of core-level states." Journal of Chemical Theory and Computation 17, no. 1:201-210. PNNL-SA-154437. doi:10.1021/acs.jctc.0c00909
- Apra E., E.J. Bylaska, W.A. De Jong, N. Govind, K. Kowalski, T.P. Straatsma, and M. Valiev, et al. 2020. "NWChem: Past, Present, and Future." The Journal of Chemical Physics 152, no. 18:184102. PNNL-SA-151542. doi:10.1063/5.0004997
- Kim J., A.R. Panyala, B. Peng, K. Kowalski, P. Sadayappan, and S. Krishnamoorthy. 2020. "Scalable Heterogeneous Execution of a Coupled-Cluster Model with Perturbative Triples." In International Conference for High Performance Computing, Networking, Storage and Analysis (SC2020), November 9-19, 2020, Atlanta, GA, 1-15. Piscataway, New Jersey: IEEE. PNNL-SA-154438. doi:10.1109/SC41405.2020.00083
- Kowalski K., and B. Peng. 2020. "Quantum simulations employing connected moments expansions." Journal of Chemical Physics 153, no. 20:Article No. 201102. PNNL-SA-156136. doi:10.1063/5.0030688
- Peng B., K. Kowalski, A.R. Panyala, and S. Krishnamoorthy. 2020. "Green’s function coupled cluster simulation of the near-valence ionizations of DNA-fragments." Journal of Chemical Physics 152, no. 1:Article No. 011101. PNNL-SA-148915. doi:10.1063/1.5138658
- Rehr J.J., F.D. Vila, J.J. Kas, N. Hirshberg, K. Kowalski, and B. Peng. 2020. "Equation of motion coupled-cluster cumulant approach for intrinsic losses in x-ray spectra." The Journal of Chemical Physics 152, no. 17:Article No. 174113. PNNL-SA-151280. doi:10.1063/5.0004865
- Vila F.D., J.J. Rehr, J.J. Kas, K. Kowalski, and B. Peng. 2020. "Real-time coupled-cluster approach for the cumulant Green's function." Journal of Chemical Theory and Computation 16, no. 11:6983-6992. PNNL-SA-153807. doi:10.1021/acs.jctc.0c00639
- Bauman N.P., B. Peng, and K. Kowalski. 2020. "Coupled cluster Green’s function formulations based on the effective Hamiltonians." Molecular Physics 118, no. 19-20:e1725669. PNNL-SA-147917. doi:10.1080/00268976.2020.1725669
2019
- Peng B., R. Van Beeumen, D. Williams-Young, K. Kowalski, and C. Yang. 2019. "Approximate Green’s Function Coupled Cluster A Method Employing Effective Dimension Reduction." Journal of Chemical Theory and Computation 15, no. 5:3185-3196. PNNL-SA-141176. doi:10.1021/acs.jctc.9b00172
2018
- Peng B., and K. Kowalski. 2018. "Green's function coupled-cluster approach: simulating photoelectron spectra for realistic molecular systems." Journal of Chemical Theory and Computation 14, no. 8:4335-4352. PNNL-SA-133559. doi:10.1021/acs.jctc.8b00313
- Peng B., and K. Kowalski. 2018. "Green’s function coupled cluster formulations utilizing extended inner excitations." Journal of Chemical Physics 149, no. 21:214102. PNNL-SA-136088. doi:10.1063/1.5046529
- Peng B., and K. Kowalski. 2018. "Properties of advanced coupled-cluster Green's function." Molecular Physics 116, no. 5-6:561-569. PNNL-SA-125857. doi:10.1080/00268976.2017.1351630
- Kowalski K., J. Brabec, and B. Peng 2018. " Regularized and Renormalized Many-Body Techniques for Describing Correlated Molecular Systems: A Coupled-Cluster Perspective." In Annual Reports in Computational Chemistry 14, 3-45. PNNL-SA-132767. doi:10.1016/bs.arcc.2018.06.001
2017
- Peng B., and K. Kowalski. 2017. "Highly efficient and scalable compound decomposition of two-electron integral tensor and its application in coupled cluster calculations." Journal of Chemical Theory and Computation 13, no. 9:4179-4192. PNNL-SA-126829. doi:10.1021/acs.jctc.7b00605
- Peng B., and K. Kowalski. 2017. "Low-rank factorization of electron integral tensors and its application in electronic structure theory." Chemical Physics Letters 672. PNNL-SA-122607. doi:10.1016/j.cplett.2017.01.056
- Peng B., N. Govind, E. Apra, M. Klemm, J.R. Hammond, and K. Kowalski. 2017. "Coupled Cluster Studies of Ionization Potentials and Electron Affinities of Single-Walled Carbon Nanotubes." Journal of Physical Chemistry A 121, no. 6:1328-1335. PNNL-SA-122228. doi:10.1021/acs.jpca.6b10874
2016
- Peng B., and K. Kowalski. 2016. "Coupled-cluster Green’s function: analysis of properties originating in the exponential parametrization of the ground-state wave function." Physical Review A 94, no. 6:Article No. 062512. PNNL-SA-121797. doi:10.1103/PhysRevA.94.062512