This study demonstrates a new model that integrates complex organic matter (OM) chemistry and multiple electron acceptors to predict kinetic rates of OM oxidation.
Practical decontamination of industrial wastewater depends on energy-efficient separations. This study explored using ionic liquids as part of the process, enabling efficient electrochemical separation from aqueous solutions.
Three PNNL-affiliated researchers have been named fellows of the American Association for the Advancement of Science, the world’s largest multidisciplinary scientific society.
Study demonstrates that choosing more accurate numerical process coupling helps improve simulation of dust aerosol life cycle in a global climate model.
Researchers seek to bring down costs, address potential environmental risks and maximize the benefits of harnessing wind energy above the deep waters of the Pacific.
Researchers show that small-scale turbulent fluctuations lead to larger concentrations of cloud droplets than would be possible in conventional models of atmospheric clouds
Researchers seeking to enhance a climate model’s predictive capability identify parameters that cause the largest sensitivities for several important cloud-related fidelity metrics.
Researchers developed a natural gas trade infrastructure capability within a computer planning model that includes representations of energy, agriculture and land use, economy, water, and climate systems in 32 regions of the world.