Research from PNNL and the University of Washington demonstrates the extension of the MBE for periodic systems and its use to decompose the lattice energies of different ice polymorphs.
To overcome high-performance computing bottlenecks, a research team at PNNL proposed using graph theory, a mathematical field that explores relationships and connections between a number, or cluster, of points in a space.
Three PNNL authored papers were accepted as posters to the ICLR 2023 Workshop on Physics for Machine Learning and Workshop on Mathematical and Empirical Understanding of Foundation Models.
As the world races to discover solutions for reaching net zero carbon emissions, a PNNL analysis quantifies the economic value of the existing nuclear power fleet and its carbon-free energy contributions.
Bobbie-Jo Webb-Robertson is a leader with a PhD in decision sciences & engineering systems from Rensselaer Polytechnic Institute and experience in managing complex scientific programs and line organizations. She assumed the role 3/13/23.
Machine learning models help identify important environmental properties that influence how often extreme rain events occur with critical intensity and duration.