Brown University Applied Mathematics and Engineering Professor George Karniadakis has driven solutions for science and engineering problems for over ten years with a joint appointment at PNNL.
Randomly constructed neural networks can learn how to represent light interacting with atmospheric aerosols accurately at a low computational cost and improve climate modeling capabilities.
A success story of applying convergence testing to detect and address issues of numerical discretization in nonlinear representations of turbulence and clouds.
Four PNNL researchers received highly competitive DOE Early Career Research Program awards, providing five continuous years of funding for their projects.
A new open-source feature tracking package is now available to facilitate advanced model evaluation, model development efforts, and scientific discovery.