A new study uses direct numerical simulations to develop a near-surface turbulence model for thermal convection using interpretable and physics-aware neural networks, broadening the applications of numerical simulations.
The Earth System Model Aerosol–Cloud Diagnostics package version 2 uses aircraft, ship, ground, and satellite measurements to evaluate detailed physical processes in aerosols, clouds, and aerosol–cloud interactions.
Decreased snow cover observed over the past few decades and projected for the future suggest increasing snow droughts that threaten water security and management.
Using regional meteorological data from an atmosphere reanalysis product, scientists identified 12 unique winter weather systems in the Puget Sound area, featuring differing precipitation and temperature responses to climate variabilities.
The Emissions Model Intercomparison Project examined how selected emissions-related properties affected results in 11 global chemistry and Earth-system models.
PNNL’s Center for the Remediation of Complex Sites convened attendees from around the world to discuss challenges associated with environmental contamination.
PNNL helps deliver efficiency-related rules and requirements that steadily improve performance of America’s buildings, saving energy and costs and reducing carbon emissions.
New research shows how cloud shapes affect the process of cloud evolution, resulting in better understanding of how clouds behave, improving weather forecasts, and enhancing comprehension of climate systems.
Mandy Mahoney, director of the DOE Building Technologies Office, visited PNNL in late November. One key agenda item involved meeting with staff for a discussion of effective equity and justice integration in buildings-related research.