Skip to main content

PNNL

  • About
  • News & Media
  • Careers
  • Events
  • Research
    • Scientific Discovery
      • Biology
        • Chemical Biology
        • Computational Biology
        • Ecosystem Science
        • Human Health
          • Cancer Biology
          • Exposure Science & Pathogen Biology
        • Integrative Omics
          • Advanced Metabolomics
          • Chemical Biology
          • Mass Spectrometry-Based Measurement Technologies
          • Spatial and Single-Cell Proteomics
          • Structural Biology
        • Microbiome Science
          • Biofuels & Bioproducts
          • Human Microbiome
          • Soil Microbiome
          • Synthetic Biology
        • Predictive Phenomics
      • Chemistry
        • Computational Chemistry
        • Chemical Separations
        • Chemical Physics
        • Catalysis
      • Earth & Coastal Sciences
        • Global Change
        • Atmospheric Science
          • Atmospheric Aerosols
          • Human-Earth System Interactions
          • Modeling Earth Systems
        • Coastal Science
        • Ecosystem Science
        • Subsurface Science
        • Terrestrial Aquatics
      • Materials Sciences
        • Materials in Extreme Environments
        • Precision Materials by Design
        • Science of Interfaces
        • Solid Phase Processing
          • Cold Spray
          • Friction Stir Welding & Processing
          • ShAPE
      • Nuclear & Particle Physics
        • Dark Matter
        • Flavor Physics
        • Fusion Energy Science
        • Neutrino Physics
      • Quantum Information Sciences
    • Energy Resiliency
      • Electric Grid Modernization
        • Emergency Response
        • Grid Analytics
          • AGM Program
          • Tools and Capabilities
        • Grid Architecture
        • Grid Cybersecurity
        • Grid Energy Storage
        • Grid Resilience and Decarbonization
          • Earth System Modeling
          • Energy System Modeling
        • Transmission
        • Distribution
      • Energy Efficiency
        • Appliance and Equipment Standards
        • Building Energy Codes
        • Building Technologies
          • Advanced Building Controls
          • Advanced Lighting
          • Building-Grid Integration
        • Building and Grid Modeling
        • Commercial Buildings
        • Federal Buildings
          • Federal Performance Optimization
          • Resilience and Security
        • Grid Resilience and Decarbonization
        • Residential Buildings
          • Building America Solution Center
          • Energy Efficient Technology Integration
          • Home Energy Score
        • Energy Efficient Technology Integration
      • Energy Storage
        • Electrochemical Energy Storage
        • Flexible Loads and Generation
        • Grid Integration, Controls, and Architecture
        • Regulation, Policy, and Valuation
        • Science Supporting Energy Storage
        • Chemical Energy Storage
      • Environmental Management
        • Waste Processing
        • Radiation Measurement
        • Environmental Remediation
      • Fossil Energy
        • Subsurface Energy Systems
        • Carbon Management
          • Carbon Capture
          • Carbon Storage
          • Carbon Utilization
        • Advanced Hydrocarbon Conversion
      • Nuclear Energy
        • Fuel Cycle Research
        • Advanced Reactors
        • Reactor Operations
        • Reactor Licensing
      • Renewable Energy
        • Solar Energy
        • Wind Energy
          • Wind Resource Characterization
          • Wildlife and Wind
          • Community Values and Ocean Co-Use
          • Wind Systems Integration
          • Wind Data Management
          • Distributed Wind
        • Marine Energy
          • Environmental Monitoring for Marine Energy
          • Marine Biofouling and Corrosion
          • Marine Energy Resource Characterization
          • Testing for Marine Energy
          • The Blue Economy
        • Hydropower
          • Environmental Performance of Hydropower
          • Hydropower Cybersecurity and Digitalization
          • Hydropower and the Electric Grid
          • Materials Science for Hydropower
          • Pumped Storage Hydropower
          • Water + Hydropower Planning
        • Grid Integration of Renewable Energy
        • Geothermal Energy
      • Transportation
        • Bioenergy Technologies
          • Algal Biofuels
          • Aviation Biofuels
          • Waste-to-Energy and Products
        • Hydrogen & Fuel Cells
        • Vehicle Technologies
          • Emission Control
          • Energy-Efficient Mobility Systems
          • Lightweight Materials
          • Vehicle Electrification
          • Vehicle Grid Integration
    • National Security
      • Chemical & Biothreat Signatures
        • Contraband Detection
        • Pathogen Science & Detection
        • Explosives Detection
        • Threat-Agnostic Biodefense
      • Cybersecurity
        • Discovery and Insight
        • Proactive Defense
        • Trusted Systems
      • Nuclear Material Science
      • Nuclear Nonproliferation
        • Radiological & Nuclear Detection
        • Nuclear Forensics
        • Ultra-Sensitive Nuclear Measurements
        • Nuclear Explosion Monitoring
        • Global Nuclear & Radiological Security
      • Stakeholder Engagement
        • Disaster Recovery
        • Global Collaborations
        • Legislative and Regulatory Analysis
        • Technical Training
      • Systems Integration & Deployment
        • Additive Manufacturing
        • Deployed Technologies
        • Rapid Prototyping
        • Systems Engineering
      • Threat Analysis
        • Advanced Wireless Security
          • 5G Security
          • RF Signal Detection & Exploitation
        • Grid Resilience and Decarbonization
        • Internet of Things
        • Maritime Security
        • Millimeter Wave
        • Mission Risk and Resilience
    • Data Science & Computing
      • Artificial Intelligence
      • Graph and Data Analytics
      • Software Engineering
      • Computational Mathematics & Statistics
      • Future Computing Technologies
        • Adaptive Autonomous Systems
      • Visual Analytics
    • Publications & Reports
    • Featured Research
  • People
    • Inventors
    • Lab Leadership
    • Lab Fellows
    • Staff Accomplishments
  • Partner with PNNL
    • Education
      • Undergraduate Students
      • Graduate Students
      • Post-graduate Students
      • University Faculty
      • University Partnerships
      • K-12 Educators and Students
      • STEM Education
        • STEM Workforce Development
        • STEM Outreach
        • Meet the Team
      • Internships
    • Community
      • Regional Impact
      • Philanthropy
      • Volunteering
    • Industry
      • Available Technologies
      • Industry
      • Industry Partnerships
      • Licensing & Technology Transfer
      • Entrepreneurial Leave
      • Visual Intellectual Property Search (VIPS)
  • Facilities & Centers
    • All Facilities
      • Atmospheric Radiation Measurement User Facility
      • Electricity Infrastructure Operations Center
      • Energy Sciences Center
      • Environmental Molecular Sciences Laboratory
      • Grid Storage Launchpad
      • Institute for Integrated Catalysis
      • Interdiction Technology and Integration Laboratory
      • PNNL Portland Research Center
      • PNNL Seattle Research Center
      • PNNL-Sequim (Marine and Coastal Research)
      • Radiochemical Processing Laboratory
      • Shallow Underground Laboratory

CDI Scientists Adapt Intrinsically Porous Polymers for Filament-Based 3D Printing

CDI Scientists Adapt Intrinsically Porous Polymers for Filament-Based 3D Printing
Depicted are 3D-printed structures that include a high mass fraction of intrinsically microporous polymer (PIM-1). Polymers with permanent porosity such as PIM-1 have in recent years set new benchmarks in gas separations, for example. A notable hurdle to the more widespread usage of porous polymers is the sparing number of methods established to process a typically pure powdered form into tailored shapes. In this study, detailed in ACS Appl. Polym. Mater. 2019, 1, 482-492 (doi.org/10.1021/acsapm.8b00172), new composite printing feedstocks were developed that integrate PIM-1 into thermoplastic blends that enabled routine processing to yield complex macroscale 3D forms. Processing methods and a variety of blend compositions were developed to modulate surface areas (and potentially sorbent and reactive properties) in printed objects.

Return to CDI News & Highlights

Research Team: Zack Kennedy, Josef Christ, Bruce Arey, Lirong Zhong, Chris Barrett

Summary: Because they are high-performing and can be produced at a low cost relative to other microporous materials, Microporous polymers (MPPs) are now emerging in areas such as gas separations and storage. Further advancement of MPPs requires new processing methods for broad application. In this work, an archetypical MPP was systematically blended with thermoplastics, enabling processing by extrusion and 3D printing. Techniques developed led to complex free-standing MPP-based 3D objects with desirable microstructural features.

Science Impact: Microporous polymers are currently in rapid development for use in applications aligned with energy and national security missions. The PNNL research team anticipates that their thermoplastic-blending and extrusion 3D printing approach will be a powerful strategy to produce engineered microporous polymer-containing composite structures.

Contribution to CDI: Development of feedstocks and detailed characterization of printed objects is central to identifying part- and process-specific chemical signatures that can be leveraged for forensics or for performance prediction.

Abstract: Future advances and usage of all-organic polymeric materials with permanent void spaces and high surface areas, in applications such as separations or as supports, depends heavily on the development of processing techniques to produce complex geometry objects. Here, the high free volume glassy microporous polymer PIM-1 was fabricated, as a major component in a polymer blend, into complex and customizable 3D objects by fused filament fabrication (FFF). PIM-1 was found to be compatible with polycaprolactone (PCL) and polylactic acid (PLA) and thus could be processed by extrusion into filaments with high loadings of PIM-1 (50% by mass). Ternary PCL/PLA/PIM-1 composite filaments provided an optimal balance of durability and melt flow characteristics for consistent FFF 3D printing of intricate structures. As printed, the micropores of PIM-1 were blocked and inaccessible to N2 during sorption experiments; however, the ternary composite structures displayed significant meso- and macroporosity and nanostructured phase separation. Postprinting immersion in 3-chloro-1-propanol was identified to selectively remove PCL within the composites, re-expose the characteristic micropores of PIM-1, and retain the macrostructure of the printed object. After postprinting treatments, specific surface areas by the Brunauer–Emmett–Teller method (as high as 460 m2 g–1) were found to directly correlate with the PCL content originally present. The extrusion-based processing methodology provides a new approach for production of intrinsically porous polymer objects in custom and complex shapes by reinforcement with thermoplastics (PCL and PLA).

Citation: 

  • Kennedy ZC, J Christ, B Arey, L Zhong, C Barrett. 2019. “Tunable Porosity in Fused Filament 3D-Printed Blends of Intrinsically Porous Polymer and Thermoplastic Aliphatic Polyesters Polycaprolactone and Polylactic Acid.” ACS Applied Polymer Materials, 1 (3), 482-492, 10.1021/acsapm.8b00172

PNNL

  • Get in Touch
    • Contact
    • Careers
    • Doing Business
    • Environmental Reports
    • Security & Privacy
    • Vulnerability Disclosure Policy
  • Research
    • Scientific Discovery
    • Energy Resiliency
    • National Security
Subscribe to PNNL News
Department of Energy Logo Battelle Logo
Pacific Northwest National Laboratory (PNNL) is managed and operated by Battelle for the Department of Energy
  • YouTube
  • Facebook
  • X (formerly Twitter)
  • Instagram
  • LinkedIn