Skip to main content

PNNL

  • About
  • News & Media
  • Careers
  • Events
  • Research
    • Scientific Discovery
      • Biology
        • Chemical Biology
        • Computational Biology
        • Ecosystem Science
        • Human Health
          • Cancer Biology
          • Exposure Science & Pathogen Biology
        • Integrative Omics
          • Advanced Metabolomics
          • Chemical Biology
          • Mass Spectrometry-Based Measurement Technologies
          • Spatial and Single-Cell Proteomics
          • Structural Biology
        • Microbiome Science
          • Biofuels & Bioproducts
          • Human Microbiome
          • Soil Microbiome
          • Synthetic Biology
        • Predictive Phenomics
      • Chemistry
        • Computational Chemistry
        • Chemical Separations
        • Chemical Physics
        • Catalysis
      • Earth & Coastal Sciences
        • Global Change
        • Atmospheric Science
          • Atmospheric Aerosols
          • Human-Earth System Interactions
          • Modeling Earth Systems
        • Coastal Science
        • Ecosystem Science
        • Subsurface Science
        • Terrestrial Aquatics
      • Materials Sciences
        • Materials in Extreme Environments
        • Precision Materials by Design
        • Science of Interfaces
        • Smart Advanced Manufacturing
          • Cold Spray
          • Friction Stir Welding & Processing
          • ShAPE
      • Nuclear & Particle Physics
        • Dark Matter
        • Fusion Energy Science
        • Neutrino Physics
      • Quantum Information Sciences
    • Energy Resiliency
      • Electric Grid Modernization
        • Emergency Response
        • Grid Analytics
          • AGM Program
          • Tools and Capabilities
        • Grid Architecture
        • Grid Cybersecurity
        • Grid Energy Storage
        • Transmission
        • Distribution
      • Energy Efficiency
        • Appliance and Equipment Standards
        • Building Energy Codes
        • Building Technologies
          • Advanced Building Controls
          • Advanced Lighting
          • Building-Grid Integration
        • Commercial Buildings
        • Federal Buildings
          • Federal Performance Optimization
          • Resilience and Security
        • Residential Buildings
          • Building America Solution Center
          • Energy Efficient Technology Integration
          • Home Energy Score
        • Energy Efficient Technology Integration
      • Energy Storage
        • Electrochemical Energy Storage
        • Flexible Loads and Generation
        • Grid Integration, Controls, and Architecture
        • Regulation, Policy, and Valuation
        • Science Supporting Energy Storage
        • Chemical Energy Storage
      • Environmental Management
        • Waste Processing
        • Radiation Measurement
        • Environmental Remediation
      • Fossil Energy
        • Subsurface Energy Systems
        • Advanced Hydrocarbon Conversion
      • Nuclear Energy
        • Fuel Cycle Research
        • Advanced Reactors
        • Reactor Operations
        • Reactor Licensing
      • Renewable Energy
        • Solar Energy
        • Wind Energy
          • Wind Resource Characterization
          • Wildlife and Wind
          • Community Values and Ocean Co-Use
          • Wind Systems Integration
          • Wind Data Management
          • Distributed Wind
        • Marine Energy
          • Environmental Monitoring for Marine Energy
          • Marine Biofouling and Corrosion
          • Marine Energy Resource Characterization
          • Testing for Marine Energy
          • The Blue Economy
        • Hydropower
          • Environmental Performance of Hydropower
          • Hydropower Cybersecurity and Digitalization
          • Hydropower and the Electric Grid
          • Materials Science for Hydropower
          • Pumped Storage Hydropower
          • Water + Hydropower Planning
        • Grid Integration of Renewable Energy
        • Geothermal Energy
      • Transportation
        • Bioenergy Technologies
          • Algal Biofuels
          • Aviation Biofuels
          • Waste-to-Energy and Products
        • Hydrogen & Fuel Cells
        • Vehicle Technologies
          • Emission Control
          • Energy-Efficient Mobility Systems
          • Lightweight Materials
          • Vehicle Electrification
          • Vehicle Grid Integration
    • National Security
      • Chemical & Biothreat Signatures
        • Contraband Detection
        • Pathogen Science & Detection
        • Explosives Detection
        • Threat-Agnostic Biodefense
      • Cybersecurity
        • Discovery and Insight
        • Proactive Defense
        • Trusted Systems
      • Nuclear Material Science
      • Nuclear Nonproliferation
        • Radiological & Nuclear Detection
        • Nuclear Forensics
        • Ultra-Sensitive Nuclear Measurements
        • Nuclear Explosion Monitoring
        • Global Nuclear & Radiological Security
      • Stakeholder Engagement
        • Disaster Recovery
        • Global Collaborations
        • Legislative and Regulatory Analysis
        • Technical Training
      • Systems Integration & Deployment
        • Additive Manufacturing
        • Deployed Technologies
        • Rapid Prototyping
        • Systems Engineering
      • Threat Analysis
        • Advanced Wireless Security
          • 5G Security
          • RF Signal Detection & Exploitation
        • Internet of Things
        • Maritime Security
        • Millimeter Wave
        • Mission Risk and Resilience
    • Data Science & Computing
      • Artificial Intelligence
      • Graph and Data Analytics
      • Software Engineering
      • Computational Mathematics & Statistics
      • Future Computing Technologies
        • Adaptive Autonomous Systems
    • Lab Objectives
    • Publications & Reports
    • Featured Research
  • People
    • Inventors
    • Lab Leadership
    • Lab Fellows
    • Staff Accomplishments
  • Partner with PNNL
    • Education
      • Undergraduate Students
      • Graduate Students
      • Post-graduate Students
      • University Faculty
      • University Partnerships
      • K-12 Educators and Students
      • STEM Education
        • STEM Workforce Development
        • STEM Outreach
        • Meet the Team
      • Internships
    • Community
      • Regional Impact
      • Philanthropy
      • Volunteering
    • Industry
      • Why Partner with PNNL
      • Explore Types of Engagement
      • How to Partner with Us
      • Available Technologies
  • Facilities & Centers
    • All Facilities
      • Atmospheric Radiation Measurement User Facility
      • Electricity Infrastructure Operations Center
      • Energy Sciences Center
      • Environmental Molecular Sciences Laboratory
      • Grid Storage Launchpad
      • Institute for Integrated Catalysis
      • Interdiction Technology and Integration Laboratory
      • PNNL Portland Research Center
      • PNNL Seattle Research Center
      • PNNL-Sequim (Marine and Coastal Research)
      • Radiochemical Processing Laboratory
      • Shallow Underground Laboratory

Search

Search

241 - 250 of 2059 Results FOR "power sector"
  • Available Technology (91)
  • Copyright (49)
  • Event (31)
  • Expert Profile (25)
  • Facility/Instrument (9)
  • News (200)
  • Other (33)
  • Patent (101)
  • Profile (277)
  • Project (37)
  • Publication (1171)
  • Research Area (32)
  • Virtual Tour (3)
  • Artificial Intelligence (44)
  • Biology (26)
  • Chemical & Biothreat Signatures (1)
  • Chemistry (27)
  • Computing & Analytics (37)
  • Cybersecurity (17)
  • Earth & Coastal Sciences (90)
  • Electric Grid Modernization (195)
  • Energy Efficiency (51)
  • Energy Storage (81)
  • Environmental Management (17)
  • Fossil Energy (12)
  • Future Computing Technologies (9)
  • Graph and Data Analytics (14)
  • Materials Sciences (30)
  • Nuclear & Particle Physics (2)
  • Nuclear Energy (22)
  • Nuclear Material Science (3)
  • Nuclear Nonproliferation (11)
  • Quantum Information Sciences (4)
  • Renewable Energy (237)
  • Software Engineering (7)
  • Systems Integration & Deployment (8)
  • Threat Analysis (5)
  • Transportation (43)
  • Weapons of Mass Effect (1)
Clear
Patent

Method and System for Managing Power Grid Data

Smart grids promise to improve the efficiency of power grid systems and reduce green house emissions through incorporating power generation from renewable sources and shaping demand to match supply. Power generation from renewable resources such as solar and wind is affected by weather factors that can be highly fluctuating. To ensure these energy sources can be utilized efficiently, smart grid systems must shape demand through incentives to match the supply. As a result, the whole system becomes highly dynamic and requires constant adjustment. How to adjust the system can have a great impact on the efficiency and reliability of power grid systems, which offer many opportunities for innovation. We have designed a scalable data middleware specialized for smart grids.

Publication

Making Waves for Marine Energy: Triton from the Water Power Technologies Office Perspective with Samantha Eaves 

Samantha Eaves discusses the future of marine energy and her role with Triton from the Department of Energy Water Power Technologies Office perspective.  

Federal Buildings

DOE’s Federal Energy Management Program (FEMP) works with the federal agencies to ensure the productivity of energy and water are maximized to meet the agencies missions, illustrating good stewardship of taxpayers’ monies. PNNL plays a role in FEMP’s mission by providing the expertise and resources to help the federal sector become more energy and water efficient and resilient. PNNL supports FEMP in multiple fronts, including building optimization, energy and water resilience and security, training, and strategic support. PNNL is a go-to resource that provides technical expertise in building operation and maintenance, facility evaluations, water management, resilience planning, and cybersecurity, among others.

Copyright

Sustainable Data Evolution Technology (SDET) for Power Grid Optimization - Open Source

Pacific Northwest National Laboratory team is developing a sustainable data evolution technology (SDET) tool to create open-access power grid datasets and facilitate updates to these datasets by the community. The lack of open-access, realistic datasets significantly limits the ability of researchers, developers and ultimately end users to develop, benchmark and compare new methods and tools for optimizing the operation and planning of the grid, which leads to slow adoption by end users. The SDET technology will deliver large-scale realistic datasets and data tooling methods capable of generating new datasets. Along with a separate Data Repository for Power system Open models With Evolving Resources (DR POWER), which aims to deliver a repository that manages datasets through a web portal, we are proposing a complete package for evolvable power grid datasets. The objective is to make this a long lasting effort within and beyond the ARPA-E program so that the datasets can evolve over time and meet the needs for the current and future power grids.

Patent

Autonomous Sensor Fish to Support Advanced Hydropower Development

An improved sensor fish with robust design and enhanced measurement capabilities. This sensor fish contains sensors for acceleration, rotation, magnetic field intensity, pressure, and temperature. A low-power microcontroller collects data from the sensors and stores up to 5 minutes of data on a non-volatile flash memory. A rechargeable battery supplies power to the sensor fish. A recovery system helps locating sensor fish. The package, when ready for use is nearly neutrally buoyant and thus mimics the behavior of an actual fish.

Patent

Autonomous Sensor Fish to Support Advanced Hydropower Development

An improved sensor fish with robust design and enhanced measurement capabilities. This sensor fish contains sensors for acceleration, rotation, magnetic field intensity, pressure, and temperature. A low-power microcontroller collects data from the sensors and stores up to 5 minutes of data on a non-volatile flash memory. A rechargeable battery supplies power to the sensor fish. A recovery system helps locating sensor fish. The package, when ready for use is nearly neutrally buoyant and thus mimics the behavior of an actual fish.

Patent

COORDINATED VOLTAGE CONTROL AND REACTIVE POWER REGULATION BETWEEN TREANSMISSION AND DISTRIBUTION SYSTEMS (iEdison No. 0685901-18-0021, reporting done by North Carolina State University, 0578204-19-0014)

The invention is a new approach for coordinating volt-var control (VVC) between sub-transmission and distribution systems through optimal reactive power dispatch of distributed energy resources (DERs) that are aggregated as virtual power plants (VPPs). At the sub-transmission level, shunt devices and the reactive power provided by the VPPs are coordinated and optimised using VVC algorithm with weighted sum of multiple objects that include minimising voltage deviations from desirable levels at load buses, minimising loses, minimising solar curtailment, minimising demand response (DR) usage and minimising mechanical switching of shunt elements. The algorithm runs every five minutes and is solved using the AC optimal power flow technique. At the distribution level, each VPP runs a distribution VVC algorithm to dispatch reactive power from DERs. The goal of the VPP reactive power control is to meet sub-transmission service requirements while satisfying all the constraints at distribution side. Each VPP updates its reactive power capability every five minutes to allow the sub-transmission controller to formulate the optimisation problem for the next dispatch interval. The proposed tool is simulated on a Duke Energy Carolina system to demonstrate the capability of providing voltage support by dispatching reactive power of DERs as a VPP.

Patent

Transistor-based filter for inhibiting load noise from entering a power supply

A transistor-based filter for inhibiting load noise from entering a power supply is disclosed. The filter includes a first transistor having an emitter coupled to a power supply, a collector coupled to a load, and a base. The filter also includes a first capacitor coupled between the base of the first transistor and a ground terminal The filter further includes an impedance coupled between the base and a node between the collector and the load, or a second transistor and second capacitor. The impedance can be a resistor or an inductor.

Patent

CONTROL APPROACH FOR POWER MODULATION OF END-USE LOADS

Proposed a novel control methodology to modulate the aggregated power of a population of heterogeneous end-use loads to follow desired power modulation signals Applied proposed control methodology for end-use loads to provide two different grid services Frequency regulation Damping of inter-area oscillations Technical novelties: Novel signal decomposition method to facilitate load controller design so that heterogeneous end-use loads can provide the service of frequency regulation for the first time (in the literature, only homogeneous end-use loads were considered for frequency regulation) With proposed control approach, it is also for the first time that end-use loads can damp inter-area oscillations for improving grid reliability (in the literature, only transmission-level control was considered)

Patent

Method and apparatus for improving water balance in fuel cell power unit

A method and apparatus for improving the water balance in a power unit by providing the exhaust gas from the cathode side of the fuel cell as a feed gas to the combustion system condensing at least a portion of water present in the effluent from the combustion system in a condenser, and then transferring water vapor from the uncondensed portion of the effluent from the condenser to the gas fed to the cathode side of the fuel cell. Water from the exhaust gas from the cathode side of the fuel cell is either captured in the condenser, or is reused in the feed gas of the cathode side of the fuel cell. By humidifying the air fed into system with the water vapor present in the exhaust gas, water is not lost from the system. Instead, the air is being fed into the system is humidified with this water, which in turn allows the humidifier to operated at higher temperatures and/or use smaller radiators and fans and/or draw less parasitic power, thereby increasing overall system efficiency.

Pagination

  • First page First
  • Previous page Previous
  • Page 21
  • Page 22
  • Page 23
  • Page 24
  • Current page 25
  • Page 26
  • Page 27
  • Page 28
  • Page 29
  • Next page Next
  • Last page Last

PNNL

  • Get in Touch
    • Contact
    • Careers
    • Doing Business
    • Environmental Reports
    • Security & Privacy
    • Vulnerability Disclosure Policy
    • Notice to Applicants
  • Research
    • Scientific Discovery
    • Energy Resiliency
    • National Security
Subscribe to PNNL News
Department of Energy Logo Battelle Logo
Pacific Northwest National Laboratory (PNNL) is managed and operated by Battelle for the Department of Energy
  • YouTube
  • Facebook
  • X (formerly Twitter)
  • Instagram
  • LinkedIn