August 1, 2012
Journal Article

Low-Lying Energy Isomers and Global Minima of Aqueous Nanoclusters: Structures and Spectroscopic Features of the Pentagonal Dodecahedron (H2O)20 and (H3O)+(H2O)20

Abstract

We rely on a hierarchy of methods to identify the low-lying isomers for the pentagonal dodecahedron (H2O)20 and the H3O+(H2O)20 clusters. Initial screening of isomers was performed with classical potentials [TIP4P, TTM2-F, TTM2.1-F for (H2O)20 and ASP for H3O+(H2O)20] and the networks obtained with those potentials were subsequently reoptimized at the DFT (B3LYP) and MP2 levels of theory. For the pentagonal dodecahedron (H2O)20 it was found that DFT (B3LYP) and MP2 produced the same global minimum. However, this was not the case for the H3O+(H2O)20 cluster, for which MP2 produced a different network for the global minimum when compared to DFT (B3LYP). All low-lying minima of H3O+(H2O)20 correspond to hydrogen bonding networks having 9 "free" OH bonds and the hydronium ion on the surface of the cluster. The fact that DFT (B3LYP) and MP2 produce different results and issues related to the use of a smaller basis set, explains the discrepancy between the current results and the structure previously suggested [Science 304, 1137 (2004)] for the global minimum of the H3O+(H2O)20 cluster. Additionally, the IR spectra of the MP2 global minimum are closer to the experimentally measured ones than the spectra of the previously suggested DFT global minimum. The latter exhibit additional bands in the most red-shifted region of the OH stretching vibrations (corresponding to the "fingerprint" of the underlying hydrogen bonding network), which are absent from both the experimental as well as the spectra of the new structure suggested for the global minimum of this cluster. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE.

Revised: July 25, 2012 | Published: August 1, 2012

Citation

Xantheas S.S. 2012. Low-Lying Energy Isomers and Global Minima of Aqueous Nanoclusters: Structures and Spectroscopic Features of the Pentagonal Dodecahedron (H2O)20 and (H3O)+(H2O)20. Canadian Journal of Chemical Engineering 90, no. 4:843-851. PNNL-SA-62086. doi:10.1002/cjce.21645