March 5, 2021
Journal Article

Hydrogen isotopic analysis of nuclear reactor materials using ultrafast laser-induced breakdown spectroscopy

Abstract

Laser induced breakdown spectroscopy is a promising method for rapidly measuring hydrogen and its isotopes, critical to a wide range of disciplines (e.g. nuclear energy, hydrogen storage). However, line broadening can hinder the ability to detect finely spaced isotopic shifts. Here, the effects of varying plasma generation conditions (nanosecond versus femtosecond laser ablation) and ambient environments (Argon versus Helium gas) on spectral features generated from Zircaloy-4 targets with varying hydrogen isotopic compositions were studied. Time-resolved 2D spectral imaging was employed to detail spatial distribution of species throughout plasma evolution. Results highlight that hydrogen and deuterium isotopic shifts can be measured with minimal spectral broadening in ~ 10 Torr Helium gas environment using ultrafast laser-produced plasmas.

Published: March 5, 2021

Citation

Kautz E.J., A. Devaraj, D.J. Senor, and S.S. Harilal. 2021. Hydrogen isotopic analysis of nuclear reactor materials using ultrafast laser-induced breakdown spectroscopy. Optics Express 29, no. 4:4936-4946. PNNL-SA-157227. doi:10.1364/OE.412351