Tantalum offers a number of attractive properties for gun bore coating applications, including a high melting temperature, high ductility, and an environmentally friendly deposition method. However, vapor-deposited tantalum can appear in both the characteristic bcc phase found in the bulk material, and in a very brittle and less desirable "beta" phase. Presence of the beta phase in bore coatings is considered undesirable because of its brittleness and resulting failure as the coating is stressed. A high-rate triode sputtering system with a cylindrical coating geometry was used to produce thick tantalum coatings on 4340 steel smooth bore cylindrical substrates. A systematic series of tests were performed to evaluate the effects of sputtering gas species (Ar, Kr, Xe) and substrate temperature (100-300?C) during deposition on the phase and microstructure of the coatings. Heavier sputtering gases and higher substrate temperatures were found to promote the formation of bcc-phase tantalum coatings. Use of a movable target assembly was shown to promote the production of dense, single-phase tantalum coatings.
Revised: May 12, 2009 |
Published: November 1, 2000
Citation
Matson D.W., E.R. Mcclanahan, J.P. Rice, S.L. Lee, and D. Windover. 2000.Effect of Sputtering Parameters on Ta Coatings for Gun Bore Applications.Surface & Coatings Technology 133.PNNL-SA-32709.