September 1, 2012
Journal Article

Atomic-level studies of the depletion in reactive sites during clay mineral dissolution

Abstract

Environmental weathering is typically viewed as a macroscopic phenomenon that is based on a number of competing atomic- or molecular-level processes. One important process is the release of metal or metalloid elements into solution at the water-rock interface. To both explain and predict environmental weathering, the atomic-level “reactive sites” on the surfaces of minerals must be characterized and quantified. Whether these sites are atomic in nature, represented by a chemical bond, or comprise a more complex assemblage of covalently or ionically linked atoms or molecules, the kinetic rate of atomic release (dissolution) depends on the available reactive surface. For one important class of materials, clay minerals, their reactive surface areas are a challenge to quantify as it is well recognized that there are two distinct types of surfaces: edge sites and basal planes1-3. Clay dissolution rates continuously decrease over time as reactive edge sites are preferentially depleted4. Changes in reactive surface area and the difficulties in quantifying this elusive variable have often been cited as one key reason for the complexity in developing accurate rate equations3,5,6. In this work, we demonstrate a solid-state nuclear magnetic resonance (SSNMR) method for counting the number of reactive surface sites on a defined quantity of a clay mineral. Using this SSNMR proxy7-9, changes in reactive surface area were monitored for a series of batch dissolution experiments of low-defect kaolinite KGa-1b at 21 ºC and pH 3 over the course of 80 days. While no changes (within error) were observed for specific surface area (as determined from BET gas isotherm data), the SSNMR proxy revealed decreases in the number of reactive surface sites per gram of kaolinite as a function of dissolution time. This observation can be tied to a concomitant decrease in the rates of release of Si and Al into solution. These results further highlight the need to account for changes in reactive surface area when developing and using dissolution rate models for clay minerals and other heterogeneous materials in the environment.

Revised: September 22, 2014 | Published: September 1, 2012

Citation

Sanders R.L., N.M. Washton, and K.T. Mueller. 2012. Atomic-level studies of the depletion in reactive sites during clay mineral dissolution. Geochimica et Cosmochimica Acta 92. PNNL-SA-76711. doi:10.1016/j.gca.2012.05.038