Samuel Watkins
Samuel Watkins
Biography
Samuel (Sam) Watkins is a physicist in the Detection Physics Group in the Physical Detection Systems and Deployment Division of the National Security Directorate at Pacific Northwest National Laboratory. Watkins is a low-temperature detector physicist, working with transition-edge sensors, microwave kinetic inductance detectors, qubits, and more. Having experience in dark matter and neutrinoless double beta decay experiments, Watkins has worked with a variety of detection technologies and has experience analyzing the rich data from these detectors.
Watkins was previously a Director's Postdoctoral Fellow at Los Alamos National Laboratory. He holds a PhD in physics from the University of California, Berkeley, and a BS in physics from the University of California, Los Angeles.
Research Interest
- Rare event searches
- Low-temperature detector research and development
- Data analysis
Education
- University of California, Berkeley, Doctor of Philosophy, Physics
- University of California, Berkeley, Master of Arts, Physics
- University of California, Los Angeles, Bachelor of Science, Physics
Affiliations and Professional Service
American Physical Society
Awards and Recognitions
Recipient of the Director’s Postdoctoral Fellowship at Los Alamos National Laboratory (2023)
Publications
“Design Studies Of A Pulsed Quasimonoenergetic 2-keV Neutron Source For Calibration Of Low Threshold Dark Matter Detectors” Other: 2841501. ARXIV: 2410.14722
“Low Energy Backgrounds and Excess Noise in a Two-Channel Low-Threshold Calorimeter”. Other: 2841981. ARXIV: 2410.16510
“Rare multi-nucleon decays with the full data sets of the Majorana Demonstrator”. Other: 2861863. ARXIV: 2412.16047.
“The MAJORANA DEMONSTRATOR experiment's construction, commissioning, and performance” Other: 2865297. ARXIV: 2501.02060.
2024
“Assay-based background projection for the Majorana Demonstrator using Monte Carlo uncertainty propagation” Phys.Rev.C, Nov. 22, 2024. Other 2817703. DOI: 10.1103/PhysRevC.110.055804. ARXIV: 2408.06786.
“Demonstration of the HeRALD superfluid helium detector concept” Phys.Rev.D, Oct. 01, 2024. Other 2679762. DOI: 10.1103/PhysRevD.110.072006. ARXIV: 2307.11877.
“A stress-induced source of phonon bursts and quasiparticle poisoning”. Nature Commun., Jul. 31, 2024. Other: 2132582. DOI: 10.1038/s41467-024-50173-8. ARXIV: 2208.02790.
“Two-Stage Cryogenic HEMT-Based Amplifier for Low-Temperature Detectors” J.Low Temp.Phys., Feb. 06, 2024. Other: 2719269. DOI: 10.1007/s10909-023-03046-1
“Final Results of the MAJORANA DEMONSTRATOR's Search for Double-Beta Decay of $^76$Ge to Excited States of $^76$Se”. Preprint: 2024. ARXIV: 2410.03995.
“Light Dark Matter Constraints from SuperCDMS HVeV Detectors Operated Underground with an Anticoincidence Event Selection” Preprint: 2024. Other: 2806813. ARXIV: 2407.08085. DOI: 10.48550/ARXIV.2407.08085
2023
“SPLENDAQ: A Detector-Agnostic Data Acquisition System for Small-Scale Physics Experiments” Journal of Low Temperature Physics, Dec. 22, 2023. DOI: 10.1007/s10909-023-03021-w.
“Beyond-DFT $\textit{ab initio}$ Calculations for Accurate Prediction of Sub-GeV Dark Matter Experimental Reach”. Preprint: Sep. 29, 2023. ARXIV: arXiv:2310.00147v1.
“First Measurement of the Nuclear-Recoil Ionization Yield in Silicon at 100 eV”. Phys.Rev.Lett., Aug. 28, 2023. Other: 2638592. DOI: 10.1103/PhysRevLett.131.091801. ARXIV: 2303.02196.
“Majorana Demonstrator Data Release for AI/ML Applications”. Preprint: Aug. 21, 2023. ARXIV: arXiv:2308.10856v3.
“A portable and monoenergetic 24 keV neutron source based on 124Sb-9Be photoneutrons and an iron filter”. Journal of Instrumentation, Jul. 01, 2023. DOI: 10.1088/1748-0221/18/07/p07018.
“Search for low-mass dark matter via bremsstrahlung radiation and the Migdal effect in SuperCDMS” Physical Review D, Jun. 30, 2023. DOI: 10.1103/physrevd.107.112013.
“Fundamental Symmetries, Neutrons, and Neutrinos (FSNN): Whitepaper for the 2023 NSAC Long Range Plan” . Preprint: Apr. 07, 2023. ARXIV: arXiv:2304.03451v1.
“Quantum Information Science and Technology for Nuclear Physics. Input into U.S. Long-Range Planning, 2023” . Preprint: Feb. 28, 2023. ARXIV: arXiv:2303.00113.
“Athermal Phonon Sensors in Searches for Light Dark Matter”. Dissertation Thesis: Jan. 20, 2023. ARXIV: arXiv:2301.08699v1.
“Constraints on the Decay of ^{180m}Ta”. Journal Article: Physical review letters, 2023. SOURCE-WORK-ID: LAPR-2023-043355. DOI: 10.1103/PhysRevLett.131.152501.
2022
“Neutrinoless Double Beta Decay”. Preprint: Dec. 21, 2022. ARXIV: arXiv:2212.11099.
“Observation of Long-Lived UV-Induced Fluorescence from Environmental Materials Using the HVeV Detector as Developed for SuperCDMS” J.Low Temp.Phys., Oct. 15, 2022. Other: 2610894. DOI: 10.1007/s10909-022-02802-z.
“The level-1 trigger for the SuperCDMS experiment at SNOLAB”. Journal of Instrumentation, Jul. 01, 2022. DOI: 10.1088/1748-0221/17/07/P07010. DOI: 10.48550/arXiv.2204.13002.
“A backing detector for order-keV neutrons” Nucl.Instrum.Meth.A, Jun. 23, 2022. Other: 2048937. DOI: 10.1016/j.nima.2022.166981. ARXIV: 2203.04896.
“Investigating the sources of low-energy events in a SuperCDMS-HVeV detector” Physical Review D, Jun. 22, 2022. DOI: 10.1103/physrevd.105.112006. DOI: 10.48550/arXiv.2204.08038.
“Ionization yield measurement in a germanium CDMSlite detector using photo-neutron sources”. Physical Review D, Jun. 17, 2022. DOI: 10.1103/PhysRevD.105.122002 DOI: 10.48550/arXiv.2202.07043.
“Effective Field Theory Analysis of CDMSlite Run 2 Data”. Preprint: May 24, 2022. ARXIV: arXiv:2205.11683v1.
“A Strategy for Low-Mass Dark Matter Searches with Cryogenic Detectors in the SuperCDMS SNOLAB Facility” Preprint: Mar. 16, 2022. ARXIV: arXiv:2203.08463v2.
“EXCESS workshop: Descriptions of rising low-energy spectra” Journal Article: Feb. 10, 2022. ARXIV: 2202.05097. DOI: 10.21468/scipostphysproc.9.001.
2021
“Constraints on Lightly Ionizing Particles from CDMSlite” Journal Article: Physical Review Letters, Aug. 18, 2021. DOI: 10.1103/PhysRevLett.127.081802.
“Light Dark Matter Search with a High-Resolution Athermal Phonon Detector Operated Above Ground” Journal Article: Phys.Rev.Lett., Aug. 04, 2021. Other: 1809053. DOI: 10.1103/PhysRevLett.127.061801. ARXIV: 2007.14289.
“Scintillation yield from electronic and nuclear recoils in superfluid $^4$He”. Preprint: Aug. 04, 2021. ARXIV: 2108.02176. DOI: 10.1103/physrevd.105.092005.
“Design and characterization of a phonon-mediated cryogenic particle detector with an eV-scale threshold and 100 keV-scale dynamic range” Journal Article: Phys.Rev.D, Aug. 01, 2021. Other: 1838058. DOI: 10.1103/PhysRevD.104.032010. ARXIV: 2012.12430.
“Performance of a large area photon detector for rare event search applications”. Journal Article: Applied Physics Letters, Jan. 11, 2021. DOI: 10.1063/5.0032372.
2020
“Constraints on low-mass, relic dark matter candidates from a surface-operated SuperCDMS single-charge sensitive detector” Journal Article: Physical Review D, Nov. 13, 2020. DOI: 10.1103/PhysRevD.102.091101.
“Characterizing TES Power Noise for Future Single Optical-Phonon and Infrared-Photon Detectors” Journal Article: Apr. 21, 2020. ARXIV: arXiv:2004.10257. DOI: 10.1063/5.0011130.
“Constraints on dark photons and axionlike particles from the SuperCDMS Soudan experiment” Journal Article: Physical Review D, Mar. 17, 2020. DOI: 10.1103/physrevd.101.052008. ARXIV: arXiv:1911.11905.
2019
“Modeling of Impact Ionization and Charge Trapping in SuperCDMS HVeV Detectors” Journal Article: J Low Temp Phys (2020), Dec. 24, 2019. DOI: 10.1007/s10909-020-02349-x. ARXIV: arXiv:1912.11549.
“Measuring the Impact Ionization and Charge Trapping Probabilities in SuperCDMS HVeV Phonon Sensing Detectors”. Journal Article: Phys. Rev. D 101, 031101 (2020), Oct. 04, 2019. DOI: 10.1103/physrevd.101.031101. ARXIV: arXiv:1910.02162.
2018
“Search for Low-Mass Dark Matter with CDMSlite Using a Profile Likelihood Fit” Journal Article: Phys. Rev. D 99, 062001 (2019), Aug. 28, 2018. DOI: 10.1103/PhysRevD.99.062001. ARXIV: arXiv:1808.09098.
“Production Rate Measurement of Tritium and Other Cosmogenic Isotopes in Germanium with CDMSlite” Journal Article: R. Agnese et al. (SuperCDMS Collaboration), Astropart. Phys., 104 (2019) pp. 1-12, Jun. 19, 2018. ARXIV: arXiv:1806.07043. DOI: 10.1016/j.astropartphys.2018.08.006.
“Energy Loss Due to Defect Formation from $^{206}$Pb Recoils in SuperCDMS Germanium Detectors”. Journal Article: Appl. Phys. Lett. 113, 092101 (2018), May 25, 2018. ARXIV: arXiv:1805.09942. DOI: 10.1063/1.5041457.
“First Dark Matter Constraints from a SuperCDMS Single-Charge Sensitive Detector”. Journal Article: Phys. Rev. Lett. 121, 051301 (2018), Apr. 27, 2018. DOI: 10.1103/PhysRevLett.121.051301. ARXIV: arXiv:1804.10697.