Johannes Muelmenstaedt
Johannes Muelmenstaedt
Biography
Johannes Muelmenstaedt's main research focus is on the behavior of clouds in the multiscale climate system, which is one of the main uncertainties in scientists' understanding of the climate system's response to human climate perturbations. In his current projects, Muelmenstaedt aims to use observations of process variables, rather than state variables, to evaluate and eventually improve general-circulation and cloud-resolving global climate models. He is also interested in brute-forcing multiscale classical physics problems with quantum computers. Before moving to atmospheric science, Muelmenstaedt received a PhD and MA in particle physics from the University of California, Berkeley, and a BS in physics from MIT.
View Johannes’s external website at https://jmuelmen.cloud/ for more information.
Google Scholar: https://scholar.google.de/citations?user=EPB2XLoAAAAJ&hl=en
Github: https://github.com/jmuelmen
Research Interest
- Global climate change
- Cloud feedbacks
- Anthropogenic aerosol forcing
- Aerosol-cloud-precipitation interactions
- Hydrological cycle
- Improvement of climate models using observational constraints
Disciplines and Skills
- Atmospheric Science
- Data Analysis
- Physics
Education
- PhD in physics, University of California,Berkeley
- MA in physics, University of California,Berkeley
- BA in physics, Massachusetts Institute of Technology
Publications
2025
Terai, C. R., Keen, N. D., Caldwell, P. M., Beydoun, H., Bogenschutz, P. A., Chao, L.-W., Hillman, B. R., Ma, H.-Y., Zelinka, M. D., Bertagna, L., Bradley, A., Clevenger, T. C., Donahue, A. S., Foucar, J. G., Golaz, J.-C., Guba, O., Hannah, W. M., Lee, J., Lin, W., Mahfouz, N. G. A., Mülmenstädt, J., Salinger, A. G., Singh, B., Sreepathi, S., . . . Zhang, Y. (2025). Climate response to warming in Cess-Potter simulations using the global 3-km SCREAM. ESS Open Arch. https://doi.org/10.22541/essoar.173655643.33295443/v1
Li, X.∗ , Yin, X., Wiebe, N., Chun, J., Schenter, G. K., Cheung, M. S., & Mülmenstädt, J. (2025). Potential quantum advantage for simulation of fluid dynamics. Phys. Rev. Research, 7 (1), 013036. https://doi.org/10.1103/PhysRevResearch.7.013036
Xiao, H., Varble, A., Kaul, C., & Mülmenstädt, J. (2025). Downward convective moisture transport dominated by a few overshooting clouds in marine and continental shallow convection. J. Adv. Model. Earth Syst., 17 (3), e2024MS004489. https://doi.org/10.1029/2024MS004489
2024
Beall, C. M., Ma, P.-L., Christensen, M. W., Mülmenstädt, J., Varble, A., Suzuki, K., & Michibata, T. (2024). Droplet collection efficiencies inferred from satellite retrievals constrain effective radiative forcing of aerosol–cloud interactions. Atmos. Chem. Phys., 24 (9), 5287–5302. https://doi.org/10.5194/acp-24-5287-2024
Feingold, G., Ghate, V. P., Russell, L. M., Blossey, P., Cantrell, W., Christensen, M. W., Diamond, M. S., Gettelman, A., Glassmeier, F., Gryspeerdt, E., Haywood, J., Hoffmann, F., Kaul, C. M., Lebsock, M., McComiskey, A. C., McCoy, D. T., Ming, Y., Mülmenstädt, J., Possner, A., Prabhakaran, P., Quinn, P. K., Schmidt, K. S., Shaw, R. A., Singer, C. E., . . . Zheng, X. (2024). Physical science research needed to evaluate the viability and risks of marine cloud brightening. Sci. Adv., 10 (12), eadi8594. https://doi.org/10.1126/sciadv.adi8594
Mahfouz, N.∗ , Mülmenstädt, J., & Burrows, S. (2024). Present-day correlations are insufficient to predict cloud albedo change by anthropogenic aerosols in E3SM v2. Atmos. Chem. Phys., 24 (12), 7253–7260. https://doi.org/10.5194/acp-24-7253-2024
Mülmenstädt, J., Ackerman, A. S., Fridlind, A. M., Huang, M., Ma, P.-L., Mahfouz, N.∗ , Bauer, S. E., Burrows, S. M., Christensen, M. W., Dipu, S., Gettelman, A., Leung, L. R., Tornow, F., Quaas, J., Varble, A. C., Wang, H., Zhang, K., & Zheng, Y. (2024). Can general circulation models (GCMs) represent cloud liquid water path adjustments to aerosol–cloud interactions? Atmos. Chem. Phys., 24 (23), 13633–13652. https://doi.org/10.5194/acp-24-13633-2024
Mülmenstädt, J., Gryspeerdt, E., Dipu, S., Quaas, J., Ackerman, A. S., Fridlind, A. M., Tornow, F., Bauer, S. E., Gettelman, A., Ming, Y., Zheng, Y., Ma, P.-L., Wang, H., Zhang, K., Christensen, M. W., Varble, A. C., Leung, L. R., Liu, X., Neubauer, D., Partridge, D. G., Stier, P., & Takemura, T. (2024). General circulation models simulate negative liquid water path–droplet number correlations, but anthropogenic aerosols still increase simulated liquid water path. Atmos. Chem. Phys., 24 (12), 7331–7345. https://doi.org/10.5194/acp-24-7331-2024
Quaas, J., Andrews, T., Bellouin, N., Block, K.∗ , Boucher, O., Ceppi, P., Dagan, G., Doktorowski, S., Eichholz, H. M., Forster, P., Goren, T., Gryspeerdt, E., Hodnebrog, Ø., Jia, H., Kramer, R., Lange, C., Maycock, A. C., Mülmenstädt, J., Myhre, G., O’Connor, F. M., Pincus, R., Samset, B. H., Senf, F., Shine, K. P., . . . Wall, C. J. (2024). Adjustments to climate perturbations—Mechanisms, implications, observational constraints. AGU Adv., 5 (5), e2023AV001144. https://doi.org/10.1029/2023AV001144
2023
Christensen, M. W., Ma, P.-L., Wu, P., Varble, A. C., Mülmenstädt, J., & Fast, J. D. (2023). Evaluation of aerosol–cloud interactions in E3SM using a Lagrangian framework. Atmos. Chem. Phys., 23 (4), 2789–2812. https://doi.org/10.5194/acp-23-2789-2023
Pöhlker, M. L., Pöhlker, C., Quaas, J., Mülmenstädt, J., Pozzer, A., Andreae, M. O., Artaxo, P., Block, K.∗ , Coe, H., Ervens, B., Gallimore, P., Gaston, C. J., Gunthe, S. S., Henning, S., Herrmann, H., Krüger, O. O., McFiggans, G., Poulain, L., Raj, S. S., Reyes-Villegas, E., Royer, H. M., Walter, D., Wang, Y., & Pöschl, U. (2023). Global organic and inorganic aerosol hygroscopicity and its effect on radiative forcing. Nat. Commun., 14 (1), 6139. https://doi.org/10.1038/s41467-023-41695-8
Saliba, G., Bell, D. M., Suski, K. J., Fast, J. D., Imre, D., Kulkarni, G., Mei, F., Mülmenstädt, J. H., Pekour, M., Shilling, J. E., Tomlinson, J., Varble, A. C., Wang, J., Thornton, J. A., & Zelenyuk, A. (2023). Aircraft measurements of single particle size and composition reveal aerosol size and mixing state dictate their activation into cloud droplets. Environ. Sci.: Atmos., 3 (9), 1352–1364. https://doi.org/10.1039/D3EA00052D
Stanford, M. W., Fridlind, A. M., Silber, I., Ackerman, A. S., Cesana, G., Mülmenstädt, J., Protat, A., Alexander, S., & McDonald, A. (2023). Earth-system-model evaluation of cloud and precipitation occurrence for supercooled and warm clouds over the Southern Ocean’s Macquarie Island. Atmos. Chem. Phys., 23 (16), 9037–9069. https://doi.org/10.5194/acp-23-9037-2023
Varble, A. C., Ma, P.-L., Christensen, M. W., Mülmenstädt, J., Tang, S., & Fast, J. (2023). Evaluation of liquid cloud albedo susceptibility in E3SM using coupled eastern North Atlantic surface and satellite retrievals. Atmos. Chem. Phys., 23 (20), 13523–13553. https://doi.org/10.5194/acp-23-13523-2023
Xiao, H., Ovchinnikov, M., Berg, L. K., & Mülmenstädt, J. (2023). Evaluating shallow convection parameterization assumptions with a qt–w quadrant analysis. J. Adv. Model. Earth Syst., 15 (8), e2022MS003526. https://doi.org/10.1029/2022MS003526
2022
Christensen, M. W., Gettelman, A., Cermak, J., Dagan, G., Diamond, M., Douglas, A., Feingold, G., Glassmeier, F., Goren, T., Grosvenor, D. P., Gryspeerdt, E., Kahn, R., Li, Z., Ma, P.-L., Malavelle, F., McCoy, I. L., McCoy, D. T., McFarquhar, G., Mülmenstädt, J., Pal, S., Possner, A., Povey, A., Quaas, J., Rosenfeld, D., . . . Yuan, T. (2022). Opportunistic experiments to constrain aerosol effective radiative forcing. Atmos. Chem. Phys., 22 (1), 641–674. https://doi.org/10.5194/acp-22-641-2022
Dipu, S., Schwarz, M., Ekman, A. M. L., Gryspeerdt, E., Goren, T., Sourdeval, O., Mülmenstädt, J., & Quaas, J. (2022). Exploring satellite-derived relationships between cloud droplet number concentration and liquid water path using a large-domain large-eddy simulation. Tellus B, 74 (1), 176–188. https://doi.org/10.16993/tellusb.27
Ma, P.-L., Harrop, B. E., Larson, V. E., Neale, R. B., Gettelman, A., Morrison, H., Wang, H., Zhang, K., Klein, S. A., Zelinka, M. D., Zhang, Y., Qian, Y., Yoon, J.-H., Jones, C. R., Huang, M., Tai, S.-L., Singh, B., Bogenschutz, P. A., Zheng, X., Lin, W., Quaas, J., Chepfer, H., Brunke, M. A., Zeng, X., . . . Leung, L. R. (2022). Better calibration of cloud parameterizations and subgrid effects increases the fidelity of the E3SM Atmosphere Model version 1. Geosci. Model Dev., 15 (7), 2881–2916. https://doi.org/10.5194/gmd-15-2881-2022
McCoy, D. T., Field, P., Frazer, M. E., Zelinka, M. D., Elsaesser, G. S., Mülmenstädt, J., Tan, I., Myers, T. A., & Lebo, Z. J. (2022). Extratropical shortwave cloud feedbacks in the context of the global circulation and hydrological cycle. Geophys. Res. Lett., 49 (8), e2021GL097154. https://doi.org/10.1029/2021GL097154
Myhre, G., Samset, B., Forster, P. M., Hodnebrog, Ø., Sandstad, M., Mohr, C. W., Sillmann, J., Stjern, C. W., Andrews, T., Boucher, O., Faluvegi, G., Iversen, T., Lamarque, J.-F., Kasoar, M., Kirkevåg, A., Kramer, R., Liu, L., Mülmenstädt, J., Olivié, D., Quaas, J., Richardson, T. B., Shawki, D., Shindell, D., Smith, C., . . . Watson-Parris, D. (2022). Scientific data from Precipitation Driver Response Model Intercomparison Project. Sci. Data, 9, 123. https://doi.org/10.1038/s41597-022-01194-9
Salzmann, M., Ferrachat, S., Tully, C., Münch, S., Watson-Parris, D., Neubauer, D., Siegenthaler-Le Drian, C., Rast, S., Heinold, B., Crueger, T., Brokopf, R., Mülmenstädt, J., Quaas, J., Wan, H., Zhang, K., Lohmann, U., Stier, P., & Tegen, I. (2022). The global atmosphere–aerosol model ICON-A-HAM2.3––Initial model evaluation and effects of radiation balance tuning on aerosol optical thickness. J. Adv. Model. Earth Syst., 14 (4), e2021MS002699. https://doi.org/10.1029/2021MS002699
2021
Dipu, S., Quaas, J., Quaas, M., Rickels, W., Mülmenstädt, J., & Boucher, O. (2021). Substantial climate response outside the target area in an idealized experiment of regional radiation management. Climate, 9 (4), 66. https://doi.org/10.3390/cli9040066 Mülmenstädt, J., Salzmann, M., Kay, J. E., Zelinka, M. D., Ma, P.-L., Nam, C., Kretzschmar, J.∗ , Hörnig, S., & Quaas, J. (2021). An underestimated negative cloud feedback from cloud lifetime changes. Nat. Clim. Change, 11 (6), 508–513. https://doi.org/10.1038/s41558-021-01038-1
Mülmenstädt, J., & Wilcox, L. J. (2021). The fall and rise of the global climate model. J. Adv. Model. Earth Syst., 13 (9), e2021MS002781. https://doi.org/10.1029/2021MS002781
2020
Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D., Boucher, O., Carslaw, K. S., Christensen, M., Daniau, A.-L., Dufresne, J.-L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J. M., Lohmann, U., Malavelle, F., Mauritsen, T., McCoy, D. T., Myhre, G., Mülmenstädt, J., Neubauer, D., Possner, A., . . . Stevens, B. (2020). Bounding global aerosol radiative forcing of climate change. Rev. Geophys., 58 (1), e2019RG000660. https://doi.org/10.1029/2019RG000660
Bellouin, N., Davies, W., Shine, K. P., Quaas, J., Mülmenstädt, J., Forster, P. M., Smith, C., Lee, L., Regayre, L., Brasseur, G., Sudarchikova, N., Bouarar, I., Boucher, O., & Myhre, G. (2020). Radiative forcing of climate change from the Copernicus reanalysis of atmospheric composition. Earth Syst. Sci. Data, 12 (3), 1649–1677. https://doi.org/10.5194/essd-12-1649-2020
Block, K.∗ , Schneider, F. A.∗ , Mülmenstädt, J., Salzmann, M., & Quaas, J. (2020). Climate models disagree on the sign of total radiative feedback in the Arctic. Tellus A, 72 (1), 1696139. https://doi.org/10.1080/16000870.2019.1696139
Gryspeerdt, E., Mülmenstädt, J., Gettelman, A., Malavelle, F. F., Morrison, H., Neubauer, D., Partridge, D. G., Stier, P., Takemura, T., Wang, H., Wang, M., & Zhang, K. (2020). Surprising similarities in model and observational aerosol radiative forcing estimates. Atmos. Chem. Phys., 20 (1), 613–623. https://doi.org/10.5194/acp-20-613-2020
Hodnebrog, Ø., Myhre, G., Kramer, R. J., Shine, K. P., Andrews, T., Faluvegi, G., Kasoar, M., Kirkevåg, A., Lamarque, J.-F., Mülmenstädt, J., Olivié, D., Samset, B. H., Shindell, D., Smith, C. J., Takemura, T., & Voulgarakis, A. (2020). The effect of rapid adjustments to halocarbons and N2O on radiative forcing. npj Clim. Atmos. Sci., 3, 43. https://doi.org/10.1038/s41612-020-00150-x
Mülmenstädt, J., Nam, C., Salzmann, M., Kretzschmar, J.∗ , L’Ecuyer, T. S., Lohmann, U., Ma, P.-L., Myhre, G., Neubauer, D., Stier, P., Suzuki, K., Wang, M., & Quaas, J. (2020). Reducing the aerosol forcing uncertainty using observational constraints on warm rain processes. Sci. Adv., 6 (22), eaaz6433. https://doi.org/10.1126/sciadv.aaz6433
Quaas, J., Arola, A., Cairns, B., Christensen, M., Deneke, H., Ekman, A. M. L., Feingold, G., Fridlind, A., Gryspeerdt, E., Hasekamp, O., Li, Z., Lipponen, A., Ma, P.-L., Mülmenstädt, J., Nenes, A., Penner, J. E., Rosenfeld, D., Schrödner, R., Sinclair, K., Sourdeval, O., Stier, P., Tesche, M., van Diedenhoven, B., & Wendisch, M. (2020). Constraining the Twomey effect from satellite observations: Issues and perspectives. Atmos. Chem. Phys., 20 (23), 15079–15099. https://doi.org/10.5194/acp-20-15079-2020
Unglaub, C.∗ , Block, K.∗ , Mülmenstädt, J., Sourdeval, O., & Quaas, J. (2020). A new classification of satellite-derived liquid water cloud regimes at cloud scale. Atmos. Chem. Phys., 20 (4), 2407–2418. https://doi.org/10.5194/acp-20-2407-2020
Wood, T., Maycock, A. C., Forster, P. M., Richardson, T. B., Andrews, T., Boucher, O., Myhre, G., Samset, B. H., Kirkevåg, A., Lamarque, J.-F., Mülmenstädt, J., Olivié, D., Takemura, T., & Watson-Parris, D. (2020). The Southern Hemisphere midlatitude circulation response to rapid adjustments and sea surface temperature driven feedbacks. J. Clim., 33 (22), 9673–9690. https://doi.org/10.1175/JCLI-D-19-1015.1
2019
Böhm, C., Sourdeval, O., Mülmenstädt, J., Quaas, J., & Crewell, S. (2019). Cloud base height retrieval from multi-angle satellite data. Atmos. Meas. Tech., 12 (3), 1841–1860. https://doi.org/10.5194/amt-12-1841-2019
Gryspeerdt, E., Goren, T., Sourdeval, O., Quaas, J., Mülmenstädt, J., Dipu, S., Unglaub, C.∗ , Gettelman, A., & Christensen, M. (2019). Constraining the aerosol influence on cloud liquid water path. Atmos. Chem. Phys., 19 (8), 5331–5347. https://doi.org/10.5194/acp-19-5331-2019
Kretzschmar, J.∗ , Salzmann, M., Mülmenstädt, J., & Quaas, J. (2019). Arctic clouds in ECHAM6 and their sensitivity to cloud microphysics and surface fluxes. Atmos. Chem. Phys., 19 (16), 10571–10589. https://doi.org/10.5194/acp-19-10571-2019
Mülmenstädt, J., Gryspeerdt, E., Salzmann, M., Ma, P.-L., Dipu, S., & Quaas, J. (2019). Separating radiative forcing by aerosol–cloud interactions and rapid cloud adjustments in the ECHAM–HAMMOZ aerosol–climate model using the method of partial radiative perturbations. Atmos. Chem. Phys., 19 (24), 15415–15429. https://doi.org/10.5194/acp-19-15415-2019
Richardson, T. B., Forster, P. M., Smith, C. J., Maycock, A. C., Wood, T., Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., Hodnebrog, Ø., Kasoar, M., Kirkevåg, A., Lamarque, J.-F., Mülmenstädt, J., Myhre, G., Olivié, D., Portmann, R. W., Samset, B. H., Shawki, D., Shindell, D., Stier, P., Takemura, T., Voulgarakis, A., & Watson-Parris, D. (2019). Efficacy of climate forcings in PDRMIP models. J. Geophys. Res. Atmos., 124 (23), 12824–12844. https://doi.org/10.1029/2019JD030581
2018
Mülmenstädt, J., & Feingold, G. (2018). The radiative forcing of aerosol–cloud interactions in liquid clouds: Wrestling and embracing uncertainty. Curr. Clim. Change Rep., 4, 23–40. https://doi.org/10.1007/s40641-018-0089-y
Mülmenstädt, J., Sourdeval, O., Henderson, D. S., L’Ecuyer, T. S., Unglaub, C.∗ , Jungandreas, L.∗ , Böhm, C., Russell, L. M., & Quaas, J. (2018). Using CALIOP to estimate cloud-field base height and its uncertainty: The Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and dataset. Earth Syst. Sci. Data, 10 (4), 2279–2293. https://doi.org/10.5194/essd-10-2279-2018
Smith, C. J., Kramer, R. J., Myhre, G., Forster, P. M., Soden, B. J., Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., Hodnebrog, Ø., Kasoar, M., Kharin, V., Kirkevåg, A., Lamarque, J.-F., Mülmenstädt, J., Olivié, D., Richardson, T., Samset, B. H., Shindell, D., Stier, P., Takemura, T., Voulgarakis, A., & Watson-Parris, D. (2018). Understanding rapid adjustments to diverse forcing agents. Geophys. Res. Lett., 45 (21), 12023–12031. https://doi.org/10.1029/2018GL079826
2017
Heyn, I.∗ , Quaas, J., Salzmann, M., & Mülmenstädt, J. (2017). Effects of diabatic and adiabatic processes on relative humidity in a GCM, and relationship between mid-tropospheric vertical wind and cloud-forming and cloud-dissipating processes. Tellus A, 69 (1), 1272753. https://doi.org/10.1080/16000870.2016.1272753
Heyn, I.∗ , Block, K.∗ , Mülmenstädt, J., Gryspeerdt, E., Kühne, P., Salzmann, M., & Quaas, J. (2017). Assessment of simulated aerosol effective radiative forcings in the terrestrial spectrum. Geophys. Res. Lett., 44 (2), 1001–1007. https://doi.org/10.1002/2016GL071975
Jing, X., Suzuki, K., Guo, H., Goto, D., Ogura, T., Koshiro, T., & Mülmenstädt, J. (2017). A multimodel study on warm precipitation biases in global models compared to satellite observations. J. Geophys. Res. Atmos., 122 (21), 11806–11824. https://doi.org/10.1002/2017JD027310
Kretzschmar, J.∗ , Salzmann, M., Mülmenstädt, J., Boucher, O., & Quaas, J. (2017). Comment on “Rethinking the lower bound on aerosol radiative forcing”. J. Clim., 30 (16), 6579–6584. https://doi.org/10.1175/JCLI-D-16-0668.1
Myhre, G., Aas, W., Cherian, R., Collins, W., Faluvegi, G., Flanner, M., Forster, P., Hodnebrog, Ø., Klimont, Z., Lund, M. T., Mülmenstädt, J., Lund Myhre, C., Olivié, D., Prather, M., Quaas, J., Samset, B. H., Schnell, J. L., Schulz, M., Shindell, D., Skeie, R. B., Takemura, T., & Tsyro, S. (2017). Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the period 1990–2015. Atmos. Chem. Phys., 17 (4), 2709–2720. https://doi.org/10.5194/acp-17-2709-2017
2016
Sourdeval, O., C.-Labonnote, L., Baran, A. J., Mülmenstädt, J., & Brogniez, G. (2016). A methodology for simultaneous retrieval of ice and liquid water cloud properties. Part 2: Near-global retrievals and evaluation against A-Train products. Q. J. R. Meteorol. Soc., 142 (701), 3063–3081. https://doi.org/10.1002/qj.2889
2015
Aswathy, V. N.∗ , Boucher, O., Quaas, M., Niemeier, U., Muri, H., Mülmenstädt, J., & Quaas, J. (2015). Climate extremes in multi-model simulations of stratospheric aerosol and marine cloud brightening climate engineering. Atmos. Chem. Phys., 15 (16), 9593–9610. https://doi.org/10.5194/acp-15-9593-2015
Mülmenstädt, J., Sourdeval, O., Delanoë, J., & Quaas, J. (2015). Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds derived from A-Train satellite retrievals. Geophys. Res. Lett., 42 (15), 6502–6509. https://doi.org/10.1002/2015GL064604
Rosch, J., Heus, T., Brueck, M., Salzmann, M., Mülmenstädt, J., Schlemmer, L., & Quaas, J. (2015). Analysis of diagnostic climate model cloud parametrizations using large-eddy simulations. Q. J. R. Meteorol. Soc., 141 (691), 2199–2205. https://doi.org/10.1002/qj.2515
2013
Russell, L. M., Sorooshian, A., Seinfeld, J. H., Albrecht, B. A., Nenes, A., Ahlm, L., Chen, Y.-C., Coggon, M., Craven, J. S., Flagan, R. C., Frossard, A. A., Jonsson, H., Jung, E., Lin, J. J., Metcalf, A. R., Modini, R., Mülmenstädt, J., Roberts, G., Shingler, T., Song, S., Wang, Z., & Wonaschütz, A. (2013). Eastern Pacific Emitted Aerosol Cloud Experiment. Bull. Am. Meteorol. Soc., 94 (5), 709–729. https://doi.org/10.1175/BAMS-D-12-00015.1
Wonaschütz, A., Coggon, M., Sorooshian, A., Modini, R., Frossard, A. A., Ahlm, L., Mülmenstädt, J., Roberts, G. C., Russell, L. M., Dey, S., Brechtel, F. J., & Seinfeld, J. H. (2013). Hygroscopic properties of smoke-generated organic aerosol particles emitted in the marine atmosphere. Atmos. Chem. Phys., 13 (19), 9819–9835. https://doi.org/10.5194/acp-13-9819-2013
2012
Mülmenstädt, J., Lubin, D., Russell, L. M., & Vogelmann, A. M. (2012). Cloud properties over the North Slope of Alaska: Identifying the prevailing meteorological regimes. J. Clim., 25 (23), 8238–8258. https://doi.org/10.1175/JCLI-D-11-00636.1
Shingler, T., Dey, S., Sorooshian, A., Brechtel, F. J., Wang, Z., Metcalf, A., Coggon, M., Mülmenstädt, J., Russell, L. M., Jonsson, H. H., & Seinfeld, J. H. (2012). Characterisation and airborne deployment of a new counterflow virtual impactor inlet. Atmos. Meas. Tech., 5 (6), 1259–1269. https://doi.org/10.5194/amt-5-1259-2012
CMS collaboration. (2012a). Search for anomalous production of multilepton events in pp collisions at √ s = 7 T eV . J. High Energ. Phys., 169, 0–33. https://doi.org/10.1007/JHEP06(2012)169
CMS collaboration. (2012b). Search for heavy, top-like quark pair production in the dilepton final state in $pp$ collisions at √ s = 7 tev. Phys. Lett. B, 716 (1), 103–121. https://doi.org/10.1016/j.physletb.2012.07.059
2011
CDF collaboration. (2011). Measurement of the B0 s lifetime in fully and partially reconstructed B0 s → D− s (φπ−)X decays in p¯− p collisions at √ s = 1.96 TeV. Phys. Rev. Lett., 107 (27), 272001. https://doi.org/10.1103/PhysRevLett.107.272001
CMS collaboration. (2011). First measurement of the cross section for top-quark pair production in proton–proton collisions at √ s = 7 TeV. Phys. Lett. B, 695 (5), 424–443. https://doi.org/10.1016/j.physletb.2010.11.058
2009
CDF collaboration. (2009). First observation of B0 s → D± s K∓ and measurement of the ratio of branching fractions B(B0 s → D± s K∓)/B(B0 s → D+ s π −). Phys. Rev. Lett., 103 (19), 191802. https://doi.org/10.1103/PhysRevLett.103.191802
2006
CDF collaboration. (2006a). Measurement of the B0 s – B0 s oscillation frequency. Phys. Rev. Lett., 97 (6), 062003. https://doi.org/10.1103/PhysRevLett.97.062003
CDF collaboration. (2006b). Observation of B0 s – B0 s oscillations. Phys. Rev. Lett., 97 (24), 242003. https://doi.org/10.1103/PhysRevLett.97.242003
2003
PHOBOS collaboration. (2003). The PHOBOS detector at RHIC. Nucl. Instrum. Methods Phys. Res. A, 499 (2–3), 603–623. https://doi.org/10.1016/S0168-9002(02)01959-9
2000
PHOBOS collaboration. (2000). Charged-particle multiplicity near midrapidity in central Au + Au collisions at √ sNN = 56 and 130 GeV. Phys. Rev. Lett., 85 (15), 3100–3104. https://doi.org/10.1103/PhysRevLett.85.3100