Earth Scientist
Earth Scientist

Biography

Johannes Muelmenstaedt's main research focus is on the behavior of clouds in the multiscale climate system, which is one of the main uncertainties in scientists' understanding of the climate system's response to human climate perturbations. In his current projects, Muelmenstaedt aims to use observations of process variables, rather than state variables, to evaluate and eventually improve general-circulation and cloud-resolving global climate models. He is also interested in brute-forcing multiscale classical physics problems with quantum computers. Before moving to atmospheric science, Muelmenstaedt received a PhD and MA in particle physics from the University of California, Berkeley, and a BS in physics from MIT.

View Johannes’s external website at https://jmuelmen.cloud/ for more information.

Google Scholar: https://scholar.google.de/citations?user=EPB2XLoAAAAJ&hl=en

Github: https://github.com/jmuelmen

Research Interest

  • Global climate change
  • Cloud feedbacks
  • Anthropogenic aerosol forcing
  • Aerosol-cloud-precipitation interactions
  • Hydrological cycle
  • Improvement of climate models using observational constraints

Disciplines and Skills

  • Atmospheric Science
  • Data Analysis
  • Physics

Education

  • PhD in physics, University of California,Berkeley
  • MA in physics, University of California,Berkeley
  • BA in physics, Massachusetts Institute of Technology

Publications

2025

Terai, C. R., Keen, N. D., Caldwell, P. M., Beydoun, H., Bogenschutz, P. A., Chao, L.-W., Hillman, B. R., Ma, H.-Y., Zelinka, M. D., Bertagna, L., Bradley, A., Clevenger, T. C., Donahue, A. S., Foucar, J. G., Golaz, J.-C., Guba, O., Hannah, W. M., Lee, J., Lin, W., Mahfouz, N. G. A., Mülmenstädt, J., Salinger, A. G., Singh, B., Sreepathi, S., . . . Zhang, Y. (2025). Climate response to warming in Cess-Potter simulations using the global 3-km SCREAM. ESS Open Arch. https://doi.org/10.22541/essoar.173655643.33295443/v1

Li, X. , Yin, X., Wiebe, N., Chun, J., Schenter, G. K., Cheung, M. S., & Mülmenstädt, J. (2025). Potential quantum advantage for simulation of fluid dynamics. Phys. Rev. Research, 7 (1), 013036. https://doi.org/10.1103/PhysRevResearch.7.013036

Xiao, H., Varble, A., Kaul, C., & Mülmenstädt, J. (2025). Downward convective moisture transport dominated by a few overshooting clouds in marine and continental shallow convection. J. Adv. Model. Earth Syst., 17 (3), e2024MS004489. https://doi.org/10.1029/2024MS004489

2024

Beall, C. M., Ma, P.-L., Christensen, M. W., Mülmenstädt, J., Varble, A., Suzuki, K., & Michibata, T. (2024). Droplet collection efficiencies inferred from satellite retrievals constrain effective radiative forcing of aerosol–cloud interactions. Atmos. Chem. Phys., 24 (9), 5287–5302. https://doi.org/10.5194/acp-24-5287-2024

Feingold, G., Ghate, V. P., Russell, L. M., Blossey, P., Cantrell, W., Christensen, M. W., Diamond, M. S., Gettelman, A., Glassmeier, F., Gryspeerdt, E., Haywood, J., Hoffmann, F., Kaul, C. M., Lebsock, M., McComiskey, A. C., McCoy, D. T., Ming, Y., Mülmenstädt, J., Possner, A., Prabhakaran, P., Quinn, P. K., Schmidt, K. S., Shaw, R. A., Singer, C. E., . . . Zheng, X. (2024). Physical science research needed to evaluate the viability and risks of marine cloud brightening. Sci. Adv., 10 (12), eadi8594. https://doi.org/10.1126/sciadv.adi8594

Mahfouz, N. , Mülmenstädt, J., & Burrows, S. (2024). Present-day correlations are insufficient to predict cloud albedo change by anthropogenic aerosols in E3SM v2. Atmos. Chem. Phys., 24 (12), 7253–7260. https://doi.org/10.5194/acp-24-7253-2024

Mülmenstädt, J., Ackerman, A. S., Fridlind, A. M., Huang, M., Ma, P.-L., Mahfouz, N. , Bauer, S. E., Burrows, S. M., Christensen, M. W., Dipu, S., Gettelman, A., Leung, L. R., Tornow, F., Quaas, J., Varble, A. C., Wang, H., Zhang, K., & Zheng, Y. (2024). Can general circulation models (GCMs) represent cloud liquid water path adjustments to aerosol–cloud interactions? Atmos. Chem. Phys., 24 (23), 13633–13652. https://doi.org/10.5194/acp-24-13633-2024

Mülmenstädt, J., Gryspeerdt, E., Dipu, S., Quaas, J., Ackerman, A. S., Fridlind, A. M., Tornow, F., Bauer, S. E., Gettelman, A., Ming, Y., Zheng, Y., Ma, P.-L., Wang, H., Zhang, K., Christensen, M. W., Varble, A. C., Leung, L. R., Liu, X., Neubauer, D., Partridge, D. G., Stier, P., & Takemura, T. (2024). General circulation models simulate negative liquid water path–droplet number correlations, but anthropogenic aerosols still increase simulated liquid water path. Atmos. Chem. Phys., 24 (12), 7331–7345. https://doi.org/10.5194/acp-24-7331-2024

Quaas, J., Andrews, T., Bellouin, N., Block, K. , Boucher, O., Ceppi, P., Dagan, G., Doktorowski, S., Eichholz, H. M., Forster, P., Goren, T., Gryspeerdt, E., Hodnebrog, Ø., Jia, H., Kramer, R., Lange, C., Maycock, A. C., Mülmenstädt, J., Myhre, G., O’Connor, F. M., Pincus, R., Samset, B. H., Senf, F., Shine, K. P., . . . Wall, C. J. (2024). Adjustments to climate perturbations—Mechanisms, implications, observational constraints. AGU Adv., 5 (5), e2023AV001144. https://doi.org/10.1029/2023AV001144

2023

Christensen, M. W., Ma, P.-L., Wu, P., Varble, A. C., Mülmenstädt, J., & Fast, J. D. (2023). Evaluation of aerosol–cloud interactions in E3SM using a Lagrangian framework. Atmos. Chem. Phys., 23 (4), 2789–2812. https://doi.org/10.5194/acp-23-2789-2023

Pöhlker, M. L., Pöhlker, C., Quaas, J., Mülmenstädt, J., Pozzer, A., Andreae, M. O., Artaxo, P., Block, K. , Coe, H., Ervens, B., Gallimore, P., Gaston, C. J., Gunthe, S. S., Henning, S., Herrmann, H., Krüger, O. O., McFiggans, G., Poulain, L., Raj, S. S., Reyes-Villegas, E., Royer, H. M., Walter, D., Wang, Y., & Pöschl, U. (2023). Global organic and inorganic aerosol hygroscopicity and its effect on radiative forcing. Nat. Commun., 14 (1), 6139. https://doi.org/10.1038/s41467-023-41695-8

Saliba, G., Bell, D. M., Suski, K. J., Fast, J. D., Imre, D., Kulkarni, G., Mei, F., Mülmenstädt, J. H., Pekour, M., Shilling, J. E., Tomlinson, J., Varble, A. C., Wang, J., Thornton, J. A., & Zelenyuk, A. (2023). Aircraft measurements of single particle size and composition reveal aerosol size and mixing state dictate their activation into cloud droplets. Environ. Sci.: Atmos., 3 (9), 1352–1364. https://doi.org/10.1039/D3EA00052D

Stanford, M. W., Fridlind, A. M., Silber, I., Ackerman, A. S., Cesana, G., Mülmenstädt, J., Protat, A., Alexander, S., & McDonald, A. (2023). Earth-system-model evaluation of cloud and precipitation occurrence for supercooled and warm clouds over the Southern Ocean’s Macquarie Island. Atmos. Chem. Phys., 23 (16), 9037–9069. https://doi.org/10.5194/acp-23-9037-2023

Varble, A. C., Ma, P.-L., Christensen, M. W., Mülmenstädt, J., Tang, S., & Fast, J. (2023). Evaluation of liquid cloud albedo susceptibility in E3SM using coupled eastern North Atlantic surface and satellite retrievals. Atmos. Chem. Phys., 23 (20), 13523–13553. https://doi.org/10.5194/acp-23-13523-2023

Xiao, H., Ovchinnikov, M., Berg, L. K., & Mülmenstädt, J. (2023). Evaluating shallow convection parameterization assumptions with a qt–w quadrant analysis. J. Adv. Model. Earth Syst., 15 (8), e2022MS003526. https://doi.org/10.1029/2022MS003526

2022

Christensen, M. W., Gettelman, A., Cermak, J., Dagan, G., Diamond, M., Douglas, A., Feingold, G., Glassmeier, F., Goren, T., Grosvenor, D. P., Gryspeerdt, E., Kahn, R., Li, Z., Ma, P.-L., Malavelle, F., McCoy, I. L., McCoy, D. T., McFarquhar, G., Mülmenstädt, J., Pal, S., Possner, A., Povey, A., Quaas, J., Rosenfeld, D., . . . Yuan, T. (2022). Opportunistic experiments to constrain aerosol effective radiative forcing. Atmos. Chem. Phys., 22 (1), 641–674. https://doi.org/10.5194/acp-22-641-2022

Dipu, S., Schwarz, M., Ekman, A. M. L., Gryspeerdt, E., Goren, T., Sourdeval, O., Mülmenstädt, J., & Quaas, J. (2022). Exploring satellite-derived relationships between cloud droplet number concentration and liquid water path using a large-domain large-eddy simulation. Tellus B, 74 (1), 176–188. https://doi.org/10.16993/tellusb.27

Ma, P.-L., Harrop, B. E., Larson, V. E., Neale, R. B., Gettelman, A., Morrison, H., Wang, H., Zhang, K., Klein, S. A., Zelinka, M. D., Zhang, Y., Qian, Y., Yoon, J.-H., Jones, C. R., Huang, M., Tai, S.-L., Singh, B., Bogenschutz, P. A., Zheng, X., Lin, W., Quaas, J., Chepfer, H., Brunke, M. A., Zeng, X., . . . Leung, L. R. (2022). Better calibration of cloud parameterizations and subgrid effects increases the fidelity of the E3SM Atmosphere Model version 1. Geosci. Model Dev., 15 (7), 2881–2916. https://doi.org/10.5194/gmd-15-2881-2022

McCoy, D. T., Field, P., Frazer, M. E., Zelinka, M. D., Elsaesser, G. S., Mülmenstädt, J., Tan, I., Myers, T. A., & Lebo, Z. J. (2022). Extratropical shortwave cloud feedbacks in the context of the global circulation and hydrological cycle. Geophys. Res. Lett., 49 (8), e2021GL097154. https://doi.org/10.1029/2021GL097154

Myhre, G., Samset, B., Forster, P. M., Hodnebrog, Ø., Sandstad, M., Mohr, C. W., Sillmann, J., Stjern, C. W., Andrews, T., Boucher, O., Faluvegi, G., Iversen, T., Lamarque, J.-F., Kasoar, M., Kirkevåg, A., Kramer, R., Liu, L., Mülmenstädt, J., Olivié, D., Quaas, J., Richardson, T. B., Shawki, D., Shindell, D., Smith, C., . . . Watson-Parris, D. (2022). Scientific data from Precipitation Driver Response Model Intercomparison Project. Sci. Data, 9, 123. https://doi.org/10.1038/s41597-022-01194-9

Salzmann, M., Ferrachat, S., Tully, C., Münch, S., Watson-Parris, D., Neubauer, D., Siegenthaler-Le Drian, C., Rast, S., Heinold, B., Crueger, T., Brokopf, R., Mülmenstädt, J., Quaas, J., Wan, H., Zhang, K., Lohmann, U., Stier, P., & Tegen, I. (2022). The global atmosphere–aerosol model ICON-A-HAM2.3––Initial model evaluation and effects of radiation balance tuning on aerosol optical thickness. J. Adv. Model. Earth Syst., 14 (4), e2021MS002699. https://doi.org/10.1029/2021MS002699

2021

Dipu, S., Quaas, J., Quaas, M., Rickels, W., Mülmenstädt, J., & Boucher, O. (2021). Substantial climate response outside the target area in an idealized experiment of regional radiation management. Climate, 9 (4), 66. https://doi.org/10.3390/cli9040066 Mülmenstädt, J., Salzmann, M., Kay, J. E., Zelinka, M. D., Ma, P.-L., Nam, C., Kretzschmar, J. , Hörnig, S., & Quaas, J. (2021). An underestimated negative cloud feedback from cloud lifetime changes. Nat. Clim. Change, 11 (6), 508–513. https://doi.org/10.1038/s41558-021-01038-1

Mülmenstädt, J., & Wilcox, L. J. (2021). The fall and rise of the global climate model. J. Adv. Model. Earth Syst., 13 (9), e2021MS002781. https://doi.org/10.1029/2021MS002781

2020

Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D., Boucher, O., Carslaw, K. S., Christensen, M., Daniau, A.-L., Dufresne, J.-L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J. M., Lohmann, U., Malavelle, F., Mauritsen, T., McCoy, D. T., Myhre, G., Mülmenstädt, J., Neubauer, D., Possner, A., . . . Stevens, B. (2020). Bounding global aerosol radiative forcing of climate change. Rev. Geophys., 58 (1), e2019RG000660. https://doi.org/10.1029/2019RG000660

Bellouin, N., Davies, W., Shine, K. P., Quaas, J., Mülmenstädt, J., Forster, P. M., Smith, C., Lee, L., Regayre, L., Brasseur, G., Sudarchikova, N., Bouarar, I., Boucher, O., & Myhre, G. (2020). Radiative forcing of climate change from the Copernicus reanalysis of atmospheric composition. Earth Syst. Sci. Data, 12 (3), 1649–1677. https://doi.org/10.5194/essd-12-1649-2020

Block, K. , Schneider, F. A. , Mülmenstädt, J., Salzmann, M., & Quaas, J. (2020). Climate models disagree on the sign of total radiative feedback in the Arctic. Tellus A, 72 (1), 1696139. https://doi.org/10.1080/16000870.2019.1696139

Gryspeerdt, E., Mülmenstädt, J., Gettelman, A., Malavelle, F. F., Morrison, H., Neubauer, D., Partridge, D. G., Stier, P., Takemura, T., Wang, H., Wang, M., & Zhang, K. (2020). Surprising similarities in model and observational aerosol radiative forcing estimates. Atmos. Chem. Phys., 20 (1), 613–623. https://doi.org/10.5194/acp-20-613-2020 

Hodnebrog, Ø., Myhre, G., Kramer, R. J., Shine, K. P., Andrews, T., Faluvegi, G., Kasoar, M., Kirkevåg, A., Lamarque, J.-F., Mülmenstädt, J., Olivié, D., Samset, B. H., Shindell, D., Smith, C. J., Takemura, T., & Voulgarakis, A. (2020). The effect of rapid adjustments to halocarbons and N2O on radiative forcing. npj Clim. Atmos. Sci., 3, 43. https://doi.org/10.1038/s41612-020-00150-x

Mülmenstädt, J., Nam, C., Salzmann, M., Kretzschmar, J. , L’Ecuyer, T. S., Lohmann, U., Ma, P.-L., Myhre, G., Neubauer, D., Stier, P., Suzuki, K., Wang, M., & Quaas, J. (2020). Reducing the aerosol forcing uncertainty using observational constraints on warm rain processes. Sci. Adv., 6 (22), eaaz6433. https://doi.org/10.1126/sciadv.aaz6433

Quaas, J., Arola, A., Cairns, B., Christensen, M., Deneke, H., Ekman, A. M. L., Feingold, G., Fridlind, A., Gryspeerdt, E., Hasekamp, O., Li, Z., Lipponen, A., Ma, P.-L., Mülmenstädt, J., Nenes, A., Penner, J. E., Rosenfeld, D., Schrödner, R., Sinclair, K., Sourdeval, O., Stier, P., Tesche, M., van Diedenhoven, B., & Wendisch, M. (2020). Constraining the Twomey effect from satellite observations: Issues and perspectives. Atmos. Chem. Phys., 20 (23), 15079–15099. https://doi.org/10.5194/acp-20-15079-2020

Unglaub, C. , Block, K. , Mülmenstädt, J., Sourdeval, O., & Quaas, J. (2020). A new classification of satellite-derived liquid water cloud regimes at cloud scale. Atmos. Chem. Phys., 20 (4), 2407–2418. https://doi.org/10.5194/acp-20-2407-2020

Wood, T., Maycock, A. C., Forster, P. M., Richardson, T. B., Andrews, T., Boucher, O., Myhre, G., Samset, B. H., Kirkevåg, A., Lamarque, J.-F., Mülmenstädt, J., Olivié, D., Takemura, T., & Watson-Parris, D. (2020). The Southern Hemisphere midlatitude circulation response to rapid adjustments and sea surface temperature driven feedbacks. J. Clim., 33 (22), 9673–9690. https://doi.org/10.1175/JCLI-D-19-1015.1

2019

Böhm, C., Sourdeval, O., Mülmenstädt, J., Quaas, J., & Crewell, S. (2019). Cloud base height retrieval from multi-angle satellite data. Atmos. Meas. Tech., 12 (3), 1841–1860. https://doi.org/10.5194/amt-12-1841-2019

Gryspeerdt, E., Goren, T., Sourdeval, O., Quaas, J., Mülmenstädt, J., Dipu, S., Unglaub, C. , Gettelman, A., & Christensen, M. (2019). Constraining the aerosol influence on cloud liquid water path. Atmos. Chem. Phys., 19 (8), 5331–5347. https://doi.org/10.5194/acp-19-5331-2019

Kretzschmar, J. , Salzmann, M., Mülmenstädt, J., & Quaas, J. (2019). Arctic clouds in ECHAM6 and their sensitivity to cloud microphysics and surface fluxes. Atmos. Chem. Phys., 19 (16), 10571–10589. https://doi.org/10.5194/acp-19-10571-2019

Mülmenstädt, J., Gryspeerdt, E., Salzmann, M., Ma, P.-L., Dipu, S., & Quaas, J. (2019). Separating radiative forcing by aerosol–cloud interactions and rapid cloud adjustments in the ECHAM–HAMMOZ aerosol–climate model using the method of partial radiative perturbations. Atmos. Chem. Phys., 19 (24), 15415–15429. https://doi.org/10.5194/acp-19-15415-2019

Richardson, T. B., Forster, P. M., Smith, C. J., Maycock, A. C., Wood, T., Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., Hodnebrog, Ø., Kasoar, M., Kirkevåg, A., Lamarque, J.-F., Mülmenstädt, J., Myhre, G., Olivié, D., Portmann, R. W., Samset, B. H., Shawki, D., Shindell, D., Stier, P., Takemura, T., Voulgarakis, A., & Watson-Parris, D. (2019). Efficacy of climate forcings in PDRMIP models. J. Geophys. Res. Atmos., 124 (23), 12824–12844. https://doi.org/10.1029/2019JD030581

2018

Mülmenstädt, J., & Feingold, G. (2018). The radiative forcing of aerosol–cloud interactions in liquid clouds: Wrestling and embracing uncertainty. Curr. Clim. Change Rep., 4, 23–40. https://doi.org/10.1007/s40641-018-0089-y

Mülmenstädt, J., Sourdeval, O., Henderson, D. S., L’Ecuyer, T. S., Unglaub, C. , Jungandreas, L. , Böhm, C., Russell, L. M., & Quaas, J. (2018). Using CALIOP to estimate cloud-field base height and its uncertainty: The Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and dataset. Earth Syst. Sci. Data, 10 (4), 2279–2293. https://doi.org/10.5194/essd-10-2279-2018

Smith, C. J., Kramer, R. J., Myhre, G., Forster, P. M., Soden, B. J., Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., Hodnebrog, Ø., Kasoar, M., Kharin, V., Kirkevåg, A., Lamarque, J.-F., Mülmenstädt, J., Olivié, D., Richardson, T., Samset, B. H., Shindell, D., Stier, P., Takemura, T., Voulgarakis, A., & Watson-Parris, D. (2018). Understanding rapid adjustments to diverse forcing agents. Geophys. Res. Lett., 45 (21), 12023–12031. https://doi.org/10.1029/2018GL079826

2017

Heyn, I. , Quaas, J., Salzmann, M., & Mülmenstädt, J. (2017). Effects of diabatic and adiabatic processes on relative humidity in a GCM, and relationship between mid-tropospheric vertical wind and cloud-forming and cloud-dissipating processes. Tellus A, 69 (1), 1272753. https://doi.org/10.1080/16000870.2016.1272753

Heyn, I. , Block, K. , Mülmenstädt, J., Gryspeerdt, E., Kühne, P., Salzmann, M., & Quaas, J. (2017). Assessment of simulated aerosol effective radiative forcings in the terrestrial spectrum. Geophys. Res. Lett., 44 (2), 1001–1007. https://doi.org/10.1002/2016GL071975

Jing, X., Suzuki, K., Guo, H., Goto, D., Ogura, T., Koshiro, T., & Mülmenstädt, J. (2017). A multimodel study on warm precipitation biases in global models compared to satellite observations. J. Geophys. Res. Atmos., 122 (21), 11806–11824. https://doi.org/10.1002/2017JD027310

Kretzschmar, J. , Salzmann, M., Mülmenstädt, J., Boucher, O., & Quaas, J. (2017). Comment on “Rethinking the lower bound on aerosol radiative forcing”. J. Clim., 30 (16), 6579–6584. https://doi.org/10.1175/JCLI-D-16-0668.1 

Myhre, G., Aas, W., Cherian, R., Collins, W., Faluvegi, G., Flanner, M., Forster, P., Hodnebrog, Ø., Klimont, Z., Lund, M. T., Mülmenstädt, J., Lund Myhre, C., Olivié, D., Prather, M., Quaas, J., Samset, B. H., Schnell, J. L., Schulz, M., Shindell, D., Skeie, R. B., Takemura, T., & Tsyro, S. (2017). Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the period 1990–2015. Atmos. Chem. Phys., 17 (4), 2709–2720. https://doi.org/10.5194/acp-17-2709-2017

2016

Sourdeval, O., C.-Labonnote, L., Baran, A. J., Mülmenstädt, J., & Brogniez, G. (2016). A methodology for simultaneous retrieval of ice and liquid water cloud properties. Part 2: Near-global retrievals and evaluation against A-Train products. Q. J. R. Meteorol. Soc., 142 (701), 3063–3081. https://doi.org/10.1002/qj.2889

2015

Aswathy, V. N. , Boucher, O., Quaas, M., Niemeier, U., Muri, H., Mülmenstädt, J., & Quaas, J. (2015). Climate extremes in multi-model simulations of stratospheric aerosol and marine cloud brightening climate engineering. Atmos. Chem. Phys., 15 (16), 9593–9610. https://doi.org/10.5194/acp-15-9593-2015

Mülmenstädt, J., Sourdeval, O., Delanoë, J., & Quaas, J. (2015). Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds derived from A-Train satellite retrievals. Geophys. Res. Lett., 42 (15), 6502–6509. https://doi.org/10.1002/2015GL064604

Rosch, J., Heus, T., Brueck, M., Salzmann, M., Mülmenstädt, J., Schlemmer, L., & Quaas, J. (2015). Analysis of diagnostic climate model cloud parametrizations using large-eddy simulations. Q. J. R. Meteorol. Soc., 141 (691), 2199–2205. https://doi.org/10.1002/qj.2515

2013

Russell, L. M., Sorooshian, A., Seinfeld, J. H., Albrecht, B. A., Nenes, A., Ahlm, L., Chen, Y.-C., Coggon, M., Craven, J. S., Flagan, R. C., Frossard, A. A., Jonsson, H., Jung, E., Lin, J. J., Metcalf, A. R., Modini, R., Mülmenstädt, J., Roberts, G., Shingler, T., Song, S., Wang, Z., & Wonaschütz, A. (2013). Eastern Pacific Emitted Aerosol Cloud Experiment. Bull. Am. Meteorol. Soc., 94 (5), 709–729. https://doi.org/10.1175/BAMS-D-12-00015.1

Wonaschütz, A., Coggon, M., Sorooshian, A., Modini, R., Frossard, A. A., Ahlm, L., Mülmenstädt, J., Roberts, G. C., Russell, L. M., Dey, S., Brechtel, F. J., & Seinfeld, J. H. (2013). Hygroscopic properties of smoke-generated organic aerosol particles emitted in the marine atmosphere. Atmos. Chem. Phys., 13 (19), 9819–9835. https://doi.org/10.5194/acp-13-9819-2013

2012

Mülmenstädt, J., Lubin, D., Russell, L. M., & Vogelmann, A. M. (2012). Cloud properties over the North Slope of Alaska: Identifying the prevailing meteorological regimes. J. Clim., 25 (23), 8238–8258. https://doi.org/10.1175/JCLI-D-11-00636.1

Shingler, T., Dey, S., Sorooshian, A., Brechtel, F. J., Wang, Z., Metcalf, A., Coggon, M., Mülmenstädt, J., Russell, L. M., Jonsson, H. H., & Seinfeld, J. H. (2012). Characterisation and airborne deployment of a new counterflow virtual impactor inlet. Atmos. Meas. Tech., 5 (6), 1259–1269. https://doi.org/10.5194/amt-5-1259-2012

CMS collaboration. (2012a). Search for anomalous production of multilepton events in pp collisions at √ s = 7 T eV . J. High Energ. Phys., 169, 0–33. https://doi.org/10.1007/JHEP06(2012)169

CMS collaboration. (2012b). Search for heavy, top-like quark pair production in the dilepton final state in $pp$ collisions at √ s = 7 tev. Phys. Lett. B, 716 (1), 103–121. https://doi.org/10.1016/j.physletb.2012.07.059

2011

CDF collaboration. (2011). Measurement of the B0 s lifetime in fully and partially reconstructed B0 s → D− s (φπ−)X decays in p¯− p collisions at √ s = 1.96 TeV. Phys. Rev. Lett., 107 (27), 272001. https://doi.org/10.1103/PhysRevLett.107.272001

CMS collaboration. (2011). First measurement of the cross section for top-quark pair production in proton–proton collisions at √ s = 7 TeV. Phys. Lett. B, 695 (5), 424–443. https://doi.org/10.1016/j.physletb.2010.11.058

2009

CDF collaboration. (2009). First observation of B0 s → D± s K and measurement of the ratio of branching fractions B(B0 s → D± s K)/B(B0 s → D+ s π −). Phys. Rev. Lett., 103 (19), 191802. https://doi.org/10.1103/PhysRevLett.103.191802

2006

CDF collaboration. (2006a). Measurement of the B0 s – B0 s oscillation frequency. Phys. Rev. Lett., 97 (6), 062003. https://doi.org/10.1103/PhysRevLett.97.062003

CDF collaboration. (2006b). Observation of B0 s – B0 s oscillations. Phys. Rev. Lett., 97 (24), 242003. https://doi.org/10.1103/PhysRevLett.97.242003

2003

PHOBOS collaboration. (2003). The PHOBOS detector at RHIC. Nucl. Instrum. Methods Phys. Res. A, 499 (2–3), 603–623. https://doi.org/10.1016/S0168-9002(02)01959-9

2000

PHOBOS collaboration. (2000). Charged-particle multiplicity near midrapidity in central Au + Au collisions at √ sNN = 56 and 130 GeV. Phys. Rev. Lett., 85 (15), 3100–3104. https://doi.org/10.1103/PhysRevLett.85.3100