ELECTROLYTE FOR STABLE CYCLING OF HIGH-ENERGY LITHIUM SULFUR REDOX FLOW BATTERIES
A device comprising: a lithium sulfur redox flow battery comprising an electrolyte composition comprising: (i) a dissolved Li2Sx electroactive salt, wherein x4; (ii) a solvent selected from dimethyl sulfoxide, tetrahydrofuran, or a mixture thereof; and (iii) a supporting salt at a concentration of at least 2 M, as measured by moles of supporting salt divided by the volume of the solvent without considering the volume change of the electrolyte after dissolving the supporting salt.
SIEVEUb
This code is to support a paper in which we have developed a novel method for representing protein sequence for machine learning approaches to function. The innovation is in use of arbitrary mappings to reduce the complexity of the protein sequence and allow flexible identification of common sequence features from disparate proteins. The code also includes support for cross-validation and other analyses that went in to the paper.
METHODS OF RESOLVING ARTIFACTS IN HADAMARD-TRANSFORMED DATA
A method of validating data produced from a multiplexing process on an analytical instrument is disclosed. In one embodiment, the method includes using a pseudorandom sequence to encode a multiplexed segment of data; applying Hadamard transform to generate a demultiplexed segment of the data; aligning the pseudorandom sequence to the multiplexed data; and calculating a score for at least one positive value in the demultiplexed segment to find a valid demultiplexed value..
TEM PHASE CONTRAST IMAGING WITH IMAGE PLANE PHASE GRATING
Transmission microscopy imaging systems include a mask and/or other modulator situated to encode image beams, e.g., by deflecting the image beam with respect to the mask and/or sensor. The beam is modulated/masked either before or after transmission through a sample to induce a spatially and/or temporally encoded signal by modifying any of the beam/image components including the phase/coherence, intensity, or position of the beam at the sensor. For example, a mask can be placed/translated through the beam so that several masked beams are received by a sensor during a single sensor integration time. Images associated with multiple mask displacements are then used to reconstruct a video sequence using a compressive sensing method. Another example of masked modulation involves a mechanism for phase-retrieval, whereby the beam is modulated by a set of different masks in the image plane and each masked image is recorded in the diffraction plane.
COMPRESSIVE TRANSMISSION MICROSCOPY
Transmission microscopy imaging systems include a mask and/or other modulator situated to encode image beams, e.g., by deflecting the image beam with respect to the mask and/or sensor. The beam is modulated/masked either before or after transmission through a sample to induce a spatially and/or temporally encoded signal by modifying any of the beam/image components including the phase/coherence, intensity, or position of the beam at the sensor. For example, a mask can be placed/translated through the beam so that several masked beams are received by a sensor during a single sensor integration time. Images associated with multiple mask displacements are then used to reconstruct a video sequence using a compressive sensing method. Another example of masked modulation involves a mechanism for phase-retrieval, whereby the beam is modulated by a set of different masks in the image plane and each masked image is recorded in the diffraction plane.
ELECTRON BEAM MASKS FOR COMPRESSIVE SENSORS
Transmission microscopy imaging systems include a mask and/or other modulator situated to encode image beams, e.g., by deflecting the image beam with respect to the mask and/or sensor. The beam is modulated/masked either before or after transmission through a sample to induce a spatially and/or temporally encoded signal by modifying any of the beam/image components including the phase/coherence, intensity, or position of the beam at the sensor. For example, a mask can be placed/translated through the beam so that several masked beams are received by a sensor during a single sensor integration time. Images associated with multiple mask displacements are then used to reconstruct a video sequence using a compressive sensing method. Another example of masked modulation involves a mechanism for phase-retrieval, whereby the beam is modulated by a set of different masks in the image plane and each masked image is recorded in the diffraction plane.
All-vanadium sulfate acid redox flow battery system
All-vanadium sulfate redox flow battery systems have a catholyte and an anolyte comprising an aqueous supporting solution including chloride ions and phosphate ions. The aqueous supporting solution stabilizes and increases the solubility of vanadium species in the electrolyte, allowing an increased vanadium concentration over a desired operating temperature range. According to one example, the chloride ions are provided by MgCl2, and the phosphate ions are provided by (NH4)2HPO4.
ALL-VANADIUM SULFATE ACID REDOX FLOW BATTERY SYSTEM
All-vanadium sulfate redox flow battery systems have a catholyte and an anolyte comprising an aqueous supporting solution including chloride ions and phosphate ions. The aqueous supporting solution stabilizes and increases the solubility of vanadium species in the electrolyte, allowing an increased vanadium concentration over a desired operating temperature range. According to one example, the chloride ions are provided by MgCl2, and the phosphate ions are provided by (NH4)2HPO4.
PolyCheck-ROSE
High-level compiler transformations, especially loop transformations, are widely recognized as critical optimizations to restructure programs to improve data locality and expose parallelism. Guaranteeing the correctness of program transformations is essential, and to date three main approaches have been developed: proof of equivalence of affine programs, matching the execution traces of programs, and checking bit-by-bit equivalence of the outputs of the programs. Each technique suffers from limitations in either the kind of transformations supported, space complexity, or the sensitivity to the testing dataset. PolyCheck-ROSE addresses all three limitations to provide an automatic bug checker to verify any iteration reordering transformations on affine programs, including non-affine transformations, with space consumption proportional to the original program data, and robust to arbitrary datasets of a given size. This is achieved exploiting the structure of affine program control- and data-flow to generate at compile-time lightweight checker code to be executed within the transformed program.
METHOD FOR ENHANCING THE RESOLVING POWER OF ION MOBILITY SEPARATIONS OVER A LIMITED MOBILITY RANGE
A method for raising the resolving power, specificity, and peak capacity of conventional ion mobility spectrometry is disclosed. Ions are separated in a dynamic electric field comprising an oscillatory field wave and opposing static field, or at least two counter propagating waves with different parameters (amplitude, profile, frequency, or speed). As the functional dependencies of mean drift velocity on the ion mobility in a wave and static field or in unequal waves differ, only single species is equilibrated while others drift in either direction and are mobility-separated. An ion mobility spectrum over a limited range is then acquired by measuring ion drift times through a fixed distance inside the gas-filled enclosure. The resolving power in the vicinity of equilibrium mobility substantially exceeds that for known traveling-wave or drift-tube IMS separations, with spectra over wider ranges obtainable by stitching multiple segments. The approach also enables low-cutoff, high-cutoff, and bandpass ion mobility filters.