Skip to main content

PNNL

  • About
  • News & Media
  • Careers
  • Events
  • Research
    • Scientific Discovery
      • Biology
        • Chemical Biology
        • Computational Biology
        • Ecosystem Science
        • Integrative Omics
          • Advanced Metabolomics
          • Chemical Biology
          • Mass Spectrometry-Based Measurement Technologies
          • Spatial and Single-Cell Proteomics
          • Structural Biology
        • Microbiome Science
          • Biofuels & Bioproducts
          • Human Microbiome
          • Soil Microbiome
          • Synthetic Biology
        • Predictive Phenomics
        • Human Health
          • Cancer Biology
          • Exposure Science & Pathogen Biology
      • Chemistry
        • Computational Chemistry
        • Chemical Separations
        • Chemical Physics
        • Catalysis
      • Earth & Coastal Sciences
        • Global Change
        • Atmospheric Science
          • Atmospheric Aerosols
          • Human-Earth System Interactions
          • Modeling Earth Systems
        • Coastal Science
        • Ecosystem Science
        • Subsurface Science
        • Terrestrial Aquatics
      • Materials Sciences
        • Materials in Extreme Environments
        • Precision Materials by Design
        • Science of Interfaces
        • Smart Advanced Manufacturing
          • Cold Spray
          • Friction Stir Welding & Processing
          • ShAPE
      • Nuclear & Particle Physics
        • Dark Matter
        • Fusion Energy Science
        • Neutrino Physics
      • Quantum Information Sciences
    • Energy Resiliency
      • Electric Grid Modernization
        • Emergency Response
        • Grid Analytics
          • AGM Program
          • Tools and Capabilities
        • Grid Architecture
        • Grid Cybersecurity
        • Grid Energy Storage
        • Transmission
        • Distribution
      • Energy Efficiency
        • Building Technologies
          • Advanced Building Controls
          • Advanced Lighting
          • Building-Grid Integration
        • Commercial Buildings
        • Federal Buildings
          • Federal Performance Optimization
          • Resilience and Security
        • Residential Buildings
          • Building America Solution Center
          • Energy Efficient Technology Integration
          • Home Energy Score
        • Energy Efficient Technology Integration
        • Building Energy Codes
        • Appliance and Equipment Standards
      • Energy Storage
        • Electrochemical Energy Storage
        • Flexible Loads and Generation
        • Grid Integration, Controls, and Architecture
        • Regulation, Policy, and Valuation
        • Science Supporting Energy Storage
        • Chemical Energy Storage
      • Environmental Management
        • Waste Processing
        • Radiation Measurement
        • Environmental Remediation
      • Fossil Energy
        • Subsurface Energy Systems
        • Advanced Hydrocarbon Conversion
      • Nuclear Energy
        • Fuel Cycle Research
        • Advanced Reactors
        • Reactor Operations
        • Reactor Licensing
      • Renewable Energy
        • Solar Energy
        • Wind Energy
          • Wind Resource Characterization
          • Wildlife and Wind
          • Community Values and Ocean Co-Use
          • Wind Systems Integration
          • Wind Data Management
          • Distributed Wind
        • Marine Energy
          • Environmental Monitoring for Marine Energy
          • Marine Biofouling and Corrosion
          • Marine Energy Resource Characterization
          • Testing for Marine Energy
          • The Blue Economy
        • Hydropower
          • Environmental Performance of Hydropower
          • Hydropower Cybersecurity and Digitalization
          • Hydropower and the Electric Grid
          • Materials Science for Hydropower
          • Pumped Storage Hydropower
          • Water + Hydropower Planning
        • Grid Integration of Renewable Energy
        • Geothermal Energy
      • Transportation
        • Bioenergy Technologies
          • Algal Biofuels
          • Aviation Biofuels
          • Waste-to-Energy and Products
        • Hydrogen & Fuel Cells
        • Vehicle Technologies
          • Emission Control
          • Energy-Efficient Mobility Systems
          • Lightweight Materials
          • Vehicle Electrification
          • Vehicle Grid Integration
    • National Security
      • Chemical & Biothreat Signatures
        • Contraband Detection
        • Pathogen Science & Detection
        • Explosives Detection
        • Threat-Agnostic Biodefense
      • Cybersecurity
        • Discovery and Insight
        • Proactive Defense
        • Trusted Systems
      • Nuclear Material Science
      • Nuclear Nonproliferation
        • Radiological & Nuclear Detection
        • Nuclear Forensics
        • Ultra-Sensitive Nuclear Measurements
        • Nuclear Explosion Monitoring
        • Global Nuclear & Radiological Security
      • Stakeholder Engagement
        • Disaster Recovery
        • Global Collaborations
        • Legislative and Regulatory Analysis
        • Technical Training
      • Systems Integration & Deployment
        • Additive Manufacturing
        • Deployed Technologies
        • Rapid Prototyping
        • Systems Engineering
      • Threat Analysis
        • Advanced Wireless Security
          • 5G Security
          • RF Signal Detection & Exploitation
        • Internet of Things
        • Maritime Security
        • Millimeter Wave
        • Mission Risk and Resilience
    • Data Science & Computing
      • Artificial Intelligence
      • Graph and Data Analytics
      • Software Engineering
      • Computational Mathematics & Statistics
      • Future Computing Technologies
        • Adaptive Autonomous Systems
    • Lab Objectives
    • Publications & Reports
    • Featured Research
  • People
    • Inventors
    • Lab Leadership
    • Lab Fellows
    • Staff Accomplishments
  • Partner with PNNL
    • Education
      • Undergraduate Students
      • Graduate Students
      • Post-graduate Students
      • University Faculty
      • University Partnerships
      • K-12 Educators and Students
      • STEM Education
        • STEM Workforce Development
        • STEM Outreach
      • Internships
    • Community
      • Regional Impact
      • Philanthropy
      • Volunteering
    • Industry
      • Why Partner with PNNL
      • Explore Types of Engagement
      • How to Partner with Us
      • Available Technologies
  • Facilities & Centers
    • All Facilities
      • Atmospheric Radiation Measurement User Facility
      • Electricity Infrastructure Operations Center
      • Energy Sciences Center
      • Environmental Molecular Sciences Laboratory
      • Grid Storage Launchpad
      • Institute for Integrated Catalysis
      • Interdiction Technology and Integration Laboratory
      • PNNL Portland Research Center
      • PNNL Seattle Research Center
      • PNNL-Sequim (Marine and Coastal Research)
      • Radiochemical Processing Laboratory
      • Shallow Underground Laboratory

Search

Search

1761 - 1770 of 20305 Results FOR "ssegold fc Visit Buyfc26coins.com for latest FC 26 coins news..Ostp"
  • Available Technology (277)
  • Copyright (305)
  • Event (167)
  • Expert Profile (62)
  • Facility/Instrument (56)
  • News (1521)
  • Other (283)
  • Patent (644)
  • Profile (1265)
  • Project (149)
  • Publication (15496)
  • Research Area (68)
  • Virtual Tour (12)
  • Artificial Intelligence (322)
  • Biology (526)
  • Chemical & Biothreat Signatures (41)
  • Chemistry (705)
  • Computational Mathematics & Statistics (19)
  • Computing & Analytics (363)
  • Cybersecurity (107)
  • Earth & Coastal Sciences (940)
  • Electric Grid Modernization (519)
  • Energy Efficiency (323)
  • Energy Storage (389)
  • Environmental Management (385)
  • Fossil Energy (141)
  • Future Computing Technologies (79)
  • Graph and Data Analytics (110)
  • Materials Sciences (610)
  • Nuclear & Particle Physics (99)
  • Nuclear Energy (212)
  • Nuclear Material Science (62)
  • Nuclear Nonproliferation (185)
  • Quantum Information Sciences (86)
  • Renewable Energy (529)
  • Software Engineering (35)
  • Systems Integration & Deployment (34)
  • Threat Analysis (79)
  • Transportation (326)
  • Visual Analytics (9)
  • Weapons of Mass Effect (26)
Clear
Publication

Electron Density Distributions Calculated For The Ni-Sulfides Millerite, Vaesite and Heazlewoodite and Nickel Metal: A case for The Importance Of NiNi Bond Paths For Electron Transport

Patent

SYSTEMS AND METHODS FOR PREPARING BUTENES

This invention relates to the single step conversion of ethanol and/ or aldehydes (i.e. acetaldehyde, butyraldehydes, crotonaldehyde) (either aqueous or neat) to 1- and 2-butenes-rich olefins. 1-Butene itself a commodity chemical can be converted into polybutene, its main application is as a comonomer in the production of certain kinds of polyethylene, such as linear low-density polyethylene (LLDPE). 1-Butene has also been used as a precursor to polypropylene resins, butylene oxide, and butanone. Mixtures of 1-butene and 2-butene, as produced by the methods disclosed in this invention, can be oligomerized and hydrogenated into gasoline, jet, and diesel fuels and/or into valuable fuel additives and lubricants. For the current alcohol-to-jet process, producing 1- and 2-butene from ethanol is performed in two separate steps by first dehydrating ethanol into ethylene and then dimerizing e thylene into 1- and 2-butene in a second step. Here we disclose the methods for producing 1- and 2-butene mixtures directly from either ethanol, acetaldehyde, butyraldehyde, corotonaldehyde or mixture of ethanol with one of these aldehydes. This is done using specially tailored polyfunctional catalysts comprising metal component with relatively weak hydrogenation ability (e.g., Cu) with mildly acidic support materials (e.g., ZrO2 supported on SiO2). In previous work, including a separate patent, we demonstrated such catalytic materials to be active for converting ethanol into 1,3-butadiene in one reactor. In a separate patent, we demonstrated supported Ag catalysts to be active for (aqueous) ethanol conversion into a mixture of 1 and 2-butenes. Direct conversion of aldehydes or mixture of aldehydes and ethanol into 1 and 2-butenes rich olefins has not been reported before. In this disclosure, we report these catalysts to be active and selective for converting ethanol and/ or aldehydes to 1- and 2-butenes in one single reactor under mild reducing conditions (e.g., under H2, T = 400 degrees C, P = 7 bar). Furthermore, catalyst formulation (i.e. effect of the nature of the support, promoters addition, Cu loading and ZrO2 loading) and process parameters such as H2 concentration, ethanol partial pressure, space velocity were demonstrated to have significant effect on conversion, selectivity, and stability. Results are shown in separate word document with experimental data included in Tables and Figures Here we also demonstrate how catalytic stability is enhanced for the Cu-based catalyst as compared to the Ag-based catalyst. The Cu-based catalyst presents higher resistance to coking and oxidation which enables superior durability. The product from the ethanol and or aldehyde(s) conversion contains primarily butenes and ethylene olefins mixed with H2. We previously demonstrated in a separate patent how these butenes-rich olefins can be oligomerized into gasoline, jet, diesel range hydrocarbons.

Patent

SYSTEMS AND METHODS FOR PREPARING BUTENES

This invention relates to the single step conversion of ethanol and/ or aldehydes (i.e. acetaldehyde, butyraldehydes, crotonaldehyde) (either aqueous or neat) to 1- and 2-butenes-rich olefins. 1-Butene itself a commodity chemical can be converted into polybutene, its main application is as a comonomer in the production of certain kinds of polyethylene, such as linear low-density polyethylene (LLDPE). 1-Butene has also been used as a precursor to polypropylene resins, butylene oxide, and butanone. Mixtures of 1-butene and 2-butene, as produced by the methods disclosed in this invention, can be oligomerized and hydrogenated into gasoline, jet, and diesel fuels and/or into valuable fuel additives and lubricants. For the current alcohol-to-jet process, producing 1- and 2-butene from ethanol is performed in two separate steps by first dehydrating ethanol into ethylene and then dimerizing e thylene into 1- and 2-butene in a second step. Here we disclose the methods for producing 1- and 2-butene mixtures directly from either ethanol, acetaldehyde, butyraldehyde, corotonaldehyde or mixture of ethanol with one of these aldehydes. This is done using specially tailored polyfunctional catalysts comprising metal component with relatively weak hydrogenation ability (e.g., Cu) with mildly acidic support materials (e.g., ZrO2 supported on SiO2). In previous work, including a separate patent, we demonstrated such catalytic materials to be active for converting ethanol into 1,3-butadiene in one reactor. In a separate patent, we demonstrated supported Ag catalysts to be active for (aqueous) ethanol conversion into a mixture of 1 and 2-butenes. Direct conversion of aldehydes or mixture of aldehydes and ethanol into 1 and 2-butenes rich olefins has not been reported before. In this disclosure, we report these catalysts to be active and selective for converting ethanol and/ or aldehydes to 1- and 2-butenes in one single reactor under mild reducing conditions (e.g., under H2, T = 400 degrees C, P = 7 bar). Furthermore, catalyst formulation (i.e. effect of the nature of the support, promoters addition, Cu loading and ZrO2 loading) and process parameters such as H2 concentration, ethanol partial pressure, space velocity were demonstrated to have significant effect on conversion, selectivity, and stability. Results are shown in separate word document with experimental data included in Tables and Figures Here we also demonstrate how catalytic stability is enhanced for the Cu-based catalyst as compared to the Ag-based catalyst. The Cu-based catalyst presents higher resistance to coking and oxidation which enables superior durability. The product from the ethanol and or aldehyde(s) conversion contains primarily butenes and ethylene olefins mixed with H2. We previously demonstrated in a separate patent how these butenes-rich olefins can be oligomerized into gasoline, jet, diesel range hydrocarbons.

Patent

Nanomaterials for Sodium-Ion Batteries

We prepared single, crystalline, Na4Mn9O18 nanowires with a polymer-pyrolysis method using polyacrylates of Na and Mn as precursor compounds. The optimized Na4Mn9O18 materials display high crystallinity and a homogeneous nanowire structure, which provides a mechanically stable structure as well as a short diffusion path for Na-ion intercalation and extraction. The Na4Mn9O18 nanowires have shown a high reversible capacity (128 mA h g-1 at 0.1C), excellent cycleability (77% capacity retention for 1000 cycles at 0.5C), and promising rate capability for Na-ion battery applications. The outstanding performance of the Na4Mn9O18 nanowires makes them a promising candidate to construct a viable and low-cost Na-ion battery system for upcoming power and energy storage systems.

Publication

Summary Report on Information Technology Integration Activities For project to Enhance NASA Tools for Coastal Managers in the Gulf of Mexico and Support Technology Transfer to Mexico

Publication

In vitro-in vivo extrapolation of quantitative hepatic biotransformation data for fish - I. A review of methods, and strategies for incorporating intrinsic clearance estimates into chemical kinetic models

Copyright

Transactive Energy Simulation Platform (TESP) - Open Source

TESP combines existing domain simulators in the electric power grid, with new transactive agents, growth models and evaluation scripts. The existing domain simulators include GridLAB-D for the distribution grid and single-family residential buildings, MATPOWER for transmission and bulk generation, and EnergyPlus for large buildings. More are planned for subsequent versions of TESP. The new elements are: TEAgents - simulate market participants and transactive systems for market clearing. Some of this functionality was extracted from GridLAB-D and implemented in Python for customization by PNNL and others. Growth Model - a means for simulating system changes over a multiyear period, including both normal load growth and specific investment decisions. Customizable in Python code. Evaluation Script - a means of evaluating different transactive systems through customizable post-processing in Python code. TESP will run on Linux, Windows and Mac OS X.

Publication

Nighttime chemical evolution of aerosol and trace gases in a power plant plume: Implications for secondary organic nitrate and organosulfate aerosol formation, NO3 radical chemistry, and N2O5 heterogeneous hydrolysis

Patent

Intelligent sensor and controller framework for the power grid

Disclosed below are representative embodiments of methods, apparatus, and systems for monitoring and using data in an electric power grid. For example, one disclosed embodiment comprises a sensor for measuring an electrical characteristic of a power line, electrical generator, or electrical device; a network interface; a processor; and one or more computer-readable storage media storing computer-executable instructions. In this embodiment, the computer-executable instructions include instructions for implementing an authorization and authentication module for validating a software agent received at the network interface; instructions for implementing one or more agent execution environments for executing agent code that is included with the software agent and that causes data from the sensor to be collected; and instructions for implementing an agent packaging and instantiation module for storing the collected data in a data container of the software agent and for transmitting the software agent, along with the stored data, to a next destination.

Patent

Intelligent sensor and controller framework for the power grid

Disclosed below are representative embodiments of methods, apparatus, and systems for monitoring and using data in an electric power grid. For example, one disclosed embodiment comprises a sensor for measuring an electrical characteristic of a power line, electrical generator, or electrical device; a network interface; a processor; and one or more computer-readable storage media storing computer-executable instructions. In this embodiment, the computer-executable instructions include instructions for implementing an authorization and authentication module for validating a software agent received at the network interface; instructions for implementing one or more agent execution environments for executing agent code that is included with the software agent and that causes data from the sensor to be collected; and instructions for implementing an agent packaging and instantiation module for storing the collected data in a data container of the software agent and for transmitting the software agent, along with the stored data, to a next destination.

Pagination

  • First page First
  • Previous page Previous
  • Page 173
  • Page 174
  • Page 175
  • Page 176
  • Current page 177
  • Page 178
  • Page 179
  • Page 180
  • Page 181
  • Next page Next
  • Last page Last

PNNL

  • Get in Touch
    • Contact
    • Careers
    • Doing Business
    • Environmental Reports
    • Security & Privacy
    • Vulnerability Disclosure Policy
    • Notice to Applicants
  • Research
    • Scientific Discovery
    • Energy Resiliency
    • National Security
Subscribe to PNNL News
Department of Energy Logo Battelle Logo
Pacific Northwest National Laboratory (PNNL) is managed and operated by Battelle for the Department of Energy
  • YouTube
  • Facebook
  • X (formerly Twitter)
  • Instagram
  • LinkedIn