August 7, 2025
Journal Article

Tropospheric aerosols over the western North Atlantic Ocean during the winter and summer deployments of ACTIVATE 2020: life cycle, transport, and distribution

Abstract

The Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) is a six-year (2019-2024) NASA Earth-Venture Suborbital-3 (EVS-3) mission to robustly characterize aerosol-cloud-meteorology interactions over the western North Atlantic Ocean (WNAO) during winter and summer seasons, with a focus on marine boundary layer clouds. This characterization requires understanding the aerosol life cycle (sources and sinks), composition, transport pathways, and distribution in the WNAO region. We use the GEOS-Chem chemical transport model driven by the MERRA-2 reanalysis to simulate tropospheric aerosols that are evaluated against in situ and remote sensing measurements from Falcon and King Air aircraft, respectively, as well as ground-based and satellite observations over the WNAO during the winter (Feb. 14 – Mar. 12) and summer (Aug. 13 – Sep. 30) field deployments of ACTIVATE 2020. Transport of pollution in the boundary layer behind cold fronts is a major mechanism for the North American continental outflow to the WNAO during Feb.-Mar. 2020. While large-scale frontal lifting is a dominant mechanism in winter, convective lifting significantly increases the vertical extent of major continental outflow aerosols in summer. Turbulent mixing is found to be the dominant process responsible for the vertical transport of sea salt within and ventilation out of the boundary layer in winter. The simulated boundary layer aerosol composition and optical depth (AOD) in the ACTIVATE flight domain are dominated by sea salt, followed by organic aerosol and sulfate. Compared to winter, boundary layer sea salt concentrations increased in summer over the WNAO, especially from the ACTIVATE flight areas to Bermuda, because of enhanced surface winds and emissions. Dust concentrations also significantly increased in summer because of long-range transport from North Africa. Comparisons of model and aircraft submicron non-refractory aerosol species (measured by an HR-ToF-AMS) vertical profiles show that intensive measurements of sulfate, nitrate, ammonium, and organic aerosols in the lower troposphere over the WNAO in winter provide useful constraints on model aerosol wet removal by precipitation scavenging. Comparisons of model aerosol extinction (at 550 nm) with the King Air High Spectral Resolution Lidar-2 (HSRL-2) measurements (at 532 nm) and CALIOP/CALIPSO satellite retrievals (at 532 nm) indicate that the model generally captures the continental outflow of aerosols, the land-ocean aerosol extinction gradient, and the mixing of anthropogenic aerosols with sea salt. Large enhancements of aerosol extinction at ~1.5-6.0 km altitudes from long-range transport of the western U.S. fire smoke were observed by HSRL-2 and CALIOP during Aug.-Sep. 2020. Model simulations with biomass burning (BB) emissions injected up to the mid-troposphere (vs. within the BL) better reproduce these remote-sensing observations, Falcon aircraft organic aerosol vertical profiles, as well as AERONET AOD measurements over eastern U.S. coast and Tudor Hill, Bermuda. High aerosol (mostly coarse-mode sea salt) extinction near the top (~1.5-2.0 km) of the marine BL along with high relative humidity and cloud extinction were typically seen over the WNAO (

Published: August 7, 2025

Citation

Liu H., B. Zhang, R. Moore, L.D. Ziemba, R.A. Ferrare, H. Choi, and A. Sorooshian, et al. 2025. Tropospheric aerosols over the western North Atlantic Ocean during the winter and summer deployments of ACTIVATE 2020: life cycle, transport, and distribution. Atmospheric Chemistry and Physics 25, no. 4:2087-2121. PNNL-SA-197746. doi:10.5194/acp-25-2087-2025