Coastal shoreline forests are vulnerable to seawater exposure, the impacts of which will increase due to sea-level rise, but the longterm adaption strategies and vulnerability of coastal forests are not
well understood. We used whole-tree transpiration, leaf water potential, tree-ring width, and tree-ring d13C (a proxy for intrinsic water use efficiency, iWUE) to examine the long-term adaption strategies of red maple (Acer rubrum) trees at the coastal interface (i.e., shoreline) and nearby upland in Maryland, USA. Red maple trees that grew along the shoreline and were exposed to slightly saline water (up to two PSU) had higher transpiration rates than those growing in the nearby upland forest
during a wet year, but these differences disappeared during a normal precipitation year. Shoreline trees grew more slowly than upland trees over the last four decades, but these growth differences have disappeared in the last six years. Shoreline and upland trees had similar variation in iWUE, indicating that higher transpiration rates of the seawater exposed trees did not translate into differences in water use efficiency. There were no differences in predawn and midday water potential between upland and shoreline trees, suggesting no water stress occurs in shoreline trees. These findings indicate that
urrent soil salinity is below the threshold to constrain coastal red maple physiological activities.
Revised: December 21, 2020 |
Published: December 15, 2020
Citation
Wang W., N.G. McDowell, S.C. Pennington, C. Grossiord, R.T. Leff, A. Sengupta, and N.D. Ward, et al. 2020.Tree growth, transpiration, and water-use efficiency between shoreline and upland red maple (Acer rubrum) trees in a coastal forest.Agricultural and Forest Meteorology 295.PNNL-SA-153708.doi:10.1016/j.agrformet.2020.108163