April 19, 2010
Journal Article

Thermodynamic Studies of [H2Rh(diphosphine)2]+ and [HRh(diphosphine)2(CH3CN)]2+ Complexes in Acetonitrile

Abstract

Thermodynamic studies of a series of [H2Rh(PP)2]+ and [HRh(PP)2(CH3CN)]2+ complexes have been carried out in acetonitrile. Seven different diphosphine (PP) ligands were selected to allow variation of the electronic properties of the ligand substituents, the cone angles, and the natural bite angles (NBAs). Oxidative addition of H2 to [Rh(PP)2]+ complexes is favored by diphosphine ligands with large NBAs, small cone angles, and electron donating substituents, with the NBA being the dominant factor. Large pKa values for [HRh(PP)2(CH3CN)]2+ complexes are favored by small ligand cone angles, small NBAs, and electron donating substituents with the cone angles playing a major role. The hydride donor abilities of [H2Rh(PP)2]+ complexes increase as the NBAs decrease, the cone angles decrease, and the electron donor abilities of the substituents increase. These results indicate that if solvent coordination is involved in hydride transfer or proton transfer reactions, the observed trends can be understood in terms of a combination of two different steric effects, NBAs and cone angles, and electron-donor effects of the ligand substituents. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

Revised: June 16, 2010 | Published: April 19, 2010

Citation

Wilson A.D., A.J. Miller, D.L. DuBois, J.A. Labinger, and J.E. Bercaw. 2010. Thermodynamic Studies of [H2Rh(diphosphine)2]+ and [HRh(diphosphine)2(CH3CN)]2+ Complexes in Acetonitrile. Inorganic Chemistry 49, no. 8:3918-3926. PNNL-SA-70355.