This study examines the use of transition-metal hydride complexes that can be generated by the heterolytic cleavage of H2 gas to form B–H bonds. Specifically, these studies are focused on providing a reliable and quantitative method for determining when hydride transfer from transition-metal hydrides to three-coordinate BX3 compounds will be favorable. This involves both experimental and theoretical determinations of hydride transfer abilities. Thermodynamic hydride donor abilities (?G°H-) were determined for HRh(dmpe)2 and HRh(depe)2, where dmpe = 1,2-bis(dimethylphosphinoethane) and depe = 1,2-bis(diethylphosphinoethane), on a previously established scale in acetonitrile. This hydride donor ability was used to determine the hydride donor ability of [HBEt3]- on this scale. Isodesmic reactions between [HBEt3]- and various BX3 complexes to form BEt3 and [HBX3]- were examined computationally to determine the relative hydride affinities of various BX3 compounds. The use of these scales of hydride donor abilities and hydride affinities for transition-metal hydrides and BX3 compounds is illustrated with a few selected reactions relevant to the regeneration of ammonia borane. Our findings indicate that it is possible to form B-H bonds from B-X bonds, and the extent to which BX3 compounds are reduced by transition-metal hydride complexes forming species containing multiple B-H bonds depends on the heterolytic B-X bond energy. An example is the reduction of B(SPh)3 using HRh(dmpe)2 in the presence of triethylamine to form Et3N-BH3 in high yields. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.
Revised: June 9, 2010 |
Published: October 14, 2009
Citation
Mock M.T., R.G. Potter, D.M. Camaioni, J. Li, W.G. Dougherty, W.S. Kassel, and B. Twamley, et al. 2009.Thermodynamic Studies and Hydride Transfer Reactions from a Rhodium Complex to BX3 Compounds.Journal of the American Chemical Society 131, no. 40:14454-14465.PNNL-SA-67143.