The thermal evolution of the microstructure created by irradiation of a GaN single crystal with 2 MeV Au2+ ions at 150 K is characterized following annealing at 973 K using transmission electron microscopy. In the as-irradiated sample characterized at 300 K, Ga nanocrystals with the diamond structure, which is an unstable configuration for Ga, are directly observed together with nitrogen bubbles in the irradiation-induced amorphous layer. Upon thermal annealing, the thickness of the amorphous layer decreases by ~13.1 %, and nano-beam electron diffraction analysis indicates no evidence for residual Ga nanocrystals, but instead reveals a mixture of hexagonal and cubic GaN phases in the annealed sample. Nitrogen molecules, captured in the as-irradiated bubbles, appear to debond and react with the Ga nanocrystals during the thermal annealing to form crystalline GaN. In addition, electron energy loss spectroscopy measurements reveal an atomic volume change of 18.9 % for the as-irradiated amorphous layer relative to the virgin single crystal GaN. This relative swelling of the damaged layer reduces to 7.7 % after thermal annealing. Partial recrystallization and structural relaxation of the GaN amorphous state are believed responsible for the volume change.
Revised: July 6, 2009 |
Published: April 20, 2009
Citation
Bae I., W. Jiang, C.M. Wang, W.J. Weber, and Y. Zhang. 2009.Thermal evolution of microstructure in ion-irradiated GaN.Journal of Applied Physics 105, no. 8:083514, 1-7.PNNL-SA-61765.doi:10.1063/1.3106606