Earth System Models predict climate extremes that will impact regional and global hydrology. Aquatic-terrestrial transition zones like wetlands are subjected to the immediate consequence of climate change with shifts in the magnitude and dynamics of hydrologic flow. Such fluctuating hydrology can alterthe nature and rate of biogeochemical transformations and significantly impact the carbon balance ofthe ecosystem. We tested the impacts of fluctuating hydrology and, specifically, the role of antecedentmoisture conditions in determining the dominant carbon loss mechanisms in soils sampled from a tidalfreshwater wetland system in the lower Columbia River, WA, USA. Our objective was to understand shiftsin biogeochemical processes in response to changing soil moisture, based on soil respiration and methaneproduction rates, and to elucidate such responses based on the observed electron acceptor and metaboliteprofiles under laboratory conditions. Metabolomics and biogeochemical process rates provided evidencethat soil redox was the principal factor driving metabolic function. Fluctuating redox conditions alteredterminal electron acceptor and donor availability and recovery strengths of their concentrations in soilsuch that a disproportionate release of carbon dioxide stemmed from alternative anaerobic degradationprocesses like sulfate and iron reduction compared to carbon loss due to methanogenesis. Our resultsshow that extended and short-term saturation created conditions conducive to increasing metaboliteavailability for anaerobic decomposition processes, with a significant lag in methanogenesis. In contrast,extended drying caused a cellular-level stress response and rapid recycling of alternate electron acceptors.
Revised: March 3, 2020 |
Published: April 15, 2018
Citation
Roy Chowdhury T., L.M. Bramer, D.W. Hoyt, Y. Kim, T.O. Metz, L. McCue, and H.L. Diefenderfer, et al. 2018.Temporal dynamics of CO2 and CH4 loss potentials in response to rapid hydrological shifts in tidal freshwater wetland soils.Ecological Engineering 114.PNNL-SA-123359.doi:10.1016/j.ecoleng.2017.06.041