May 1, 2009
Journal Article

Surface and Interfacial Properties of Nonaqueous-Phase Liquid Mixtures Released to the Subsurface at the Hanford Site

Abstract

Surface and interfacial tensions that arise at the interface between different phases are key parameters affecting Nonaqueous Phase Liquid (NAPL) movement and redistribution in the vadose zone after spill events. In this study, the impact of major additive components on surface and interfacial tensions for organic mixtures and wastewater was investigated. Organic mixture and wastewater compositions are based upon carbon tetrachloride (CT) mixtures released at the Hanford site, where CT was discharged simultaneously with dibutyl butyl phosphonate (DBBP), tributyl phosphate (TBP), dibutyl phosphate (DBP), and a machining lard oil (LO). A considerable amount of wastewater consisting primarily of nitrates and metal salts was also discharged. The tension values measured in this study revealed that the addition of these additive components caused a significant lowering of the interfacial tension with water or wastewater and the surface tension of the wastewater phase in equilibrium with the organic mixtures, compared to pure CT, but had minimal effect on the surface tension of the NAPL itself. These results lead to large differences in spreading coefficients for several mixtures, where the additives caused both a higher (more spreading) initial spreading coefficient and a lower (less spreading) equilibrium spreading coefficient. This indicates that if these mixtures migrate into uncontaminated areas, they will tend to spread quickly, but form a higher residual NAPL saturation after equilibrium, as compared to pure CT. Over time, CT likely volatilizes more rapidly than other components in the originally disposed mixtures and the lard oil and phosphates would become more concentrated in the remaining NAPL, resulting in a lower interfacial tension for the mixture. Spreading coefficients are expected to increase and perhaps change the equilibrated organic mixtures from nonspreading to spreading in water-wetting porous media. These results show that the behavior of organic chemical mixtures should be accounted for in numerical flow and transport models.

Revised: April 7, 2011 | Published: May 1, 2009

Citation

Nellis S., S. Nellis, H. Yoon, C. Werth, M. Oostrom, and A.J. Valocchi. 2009. Surface and Interfacial Properties of Nonaqueous-Phase Liquid Mixtures Released to the Subsurface at the Hanford Site. Vadose Zone Journal 8, no. 2:344-351. PNNL-SA-64223.