May 17, 2016
Journal Article

Spectroelectrochemistry of EuCl3 in four molten salt eutectics; 3 LiCl – NaCl, 3 LiCl – 2 KCl, LiCl – RbCl, and 3 LiCl – 2 CsCl; at 873 K

Abstract

Key electrochemical properties affecting pyroprocessing of nuclear fuel were examined in four eutectic melts using using Eu3+/2+ as a representative probe. We report the electrochemical and spectroelectrochemical behavior of EuCl3 in four molten salt eutectics (3 LiCl – NaCl, 3 LiCl – 2 KCl, LiCl – RbCl and 3 LiCl – 2 CsCl) at 873 K. Cyclic voltammetry was used to determine the redox potential for Eu3+/2+ and the applied potentials for spectroelectrochemistry. Single step chronoabsorptometry and thin-layer spectroelectrochemistry were used to obtain the number of electrons transferred, redox potentials and diffusion coefficients for Eu3+ in each eutectic melt. The redox potentials determined by thin-layer spectroelectrochemistry were extremely close to those obtained using cyclic voltammetry. The redox potential for Eu3+/2+ was most positive in the 3 LiCl - NaCl melt, showed a negative shift in the 3 LiCl - 2 KCl melt, and was the most negative in the LiCl - RbCl and 3 LiCl - 2 CsCl eutectics. The diffusion coefficient for Eu3+ followed this same trend; it was the largest in the 3 LiCl - NaCl melt and the smallest in the LiCl - RbCl and 3 LiCl - 2 CsCl melts. The basic one-electron reversible electron transfer for Eu3+/2+ was not changed by melt composition.

Revised: September 21, 2016 | Published: May 17, 2016

Citation

Schroll C.A., S. Chatterjee, T.G. Levitskaia, W.R. Heineman, and S.A. Bryan. 2016. Spectroelectrochemistry of EuCl3 in four molten salt eutectics; 3 LiCl – NaCl, 3 LiCl – 2 KCl, LiCl – RbCl, and 3 LiCl – 2 CsCl; at 873 K. Electroanalysis 28, no. 9:2158-2165. PNNL-SA-103679. doi:10.1002/elan.201600048