Most nanoporous materials with molecular-scale pores are extended frameworks composed of directional covalent or coordination bonding, such as porous metal-organic frameworks and organic network polymers. By contrast, nanoporous materials comprised of discrete organic molecules, between which there are only weak non-covalent interactions, are seldom encountered. Indeed, most organic molecules pack efficiently in the solid state to minimize the void volume, leading to non-porous materials. In recent years, a significant number of nanoporous organic molecular materials, which may be either crystalline or amorphous, have been confirmed by the studies of gas adsorption and they are surveyed in this Highlight. In addition, the possible advantages of porous organic molecular materials over porous networks are discussed.
Revised: May 21, 2013 |
Published: January 1, 2012